Elucidating the need for prostate cancer risk calculators in conjunction with mpMRI in initial risk assessment before prostate biopsy at a tertiary prostate cancer center

被引:1
作者
Krausewitz, Philipp [1 ]
Buettner, Thomas [1 ]
von Danwitz, Marthe [1 ]
Weiten, Richard [1 ]
Cox, Alexander [1 ]
Kluemper, Niklas [1 ,2 ]
Stein, Johannes [1 ]
Luetkens, Julian [3 ]
Kristiansen, Glen [4 ]
Ritter, Manuel [1 ]
Ellinger, Jorg [1 ]
机构
[1] Univ Hosp Bonn, Dept Urol & Pediat Urol, Bonn, Germany
[2] Univ Hosp Bonn, Inst Expt Oncol, Bonn, Germany
[3] Univ Hosp Bonn, Dept Diagnost & Intervent Radiol, Bonn, Germany
[4] Univ Hosp Bonn, Inst Pathol, Bonn, Germany
关键词
Clinically significant prostate cancer; Prostate biopsy; mpMRI; Risk calculators;
D O I
10.1186/s12894-024-01460-5
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Objective Utilizing personalized risk assessment for clinically significant prostate cancer (csPCa) incorporating multiparametric magnetic resonance imaging (mpMRI) reduces biopsies and overdiagnosis. We validated both multi- and univariate risk models in biopsy-naive men, with and without the inclusion of mpMRI data for csPCa detection. Methods N = 565 men underwent mpMRI-targeted prostate biopsy, and the diagnostic performance of risk calculators (RCs), mpMRI alone, and clinical measures were compared using receiver operating characteristic curve (ROC) analysis and decision curve analysis (DCA). Subgroups were stratified based on mpMRI findings and quality. Results csPCa was detected in 56.3%. PI-RADS score achieved the highest area under the curve (AUC) when comparing univariate risk models (AUC 0.82, p < 0.001). Multivariate RCs showed only marginal improvement in csPCa detection compared to PI-RADS score alone, with just one of four RCs showing significant superiority. In mpMRI-negative cases, the non-MRI-based RC performed best (AUC 0.80, p = 0.016), with the potential to spare biopsies for 23%. PSA-density and multivariate RCs demonstrated comparable performance for PI-RADS 3 constellation (AUC 0.65 vs. 0.60-0.65, p > 0.5; saved biopsies 16%). In men with suspicious mpMRI, both mpMRI-based RCs and the PI-RADS score predicted csPCa excellently (AUC 0.82-0.79 vs. 0.80, p > 0.05), highlighting superior performance compared to non-MRI-based models (all p < 0.002). Quality-assured imaging consistently improved csPCa risk stratification across all subgroups. Conclusion In tertiary centers serving a high-risk population, high-quality mpMRI provides a simple yet effective way to assess the risk of csPCa. Using multivariate RCs reduces multiple biopsies, especially in mpMRI-negative and PI-RADS 3 constellation.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Validating Indonesian Prostate Cancer Risk Calculator (IPCRC) for Predicting Prostate Cancer Risk in Cipto Mangunkusumo Hospital Jakarta [J].
Abshari, F. ;
Yuri, P. ;
Akbar, M. I. ;
Wangge, G. ;
Mochtar, C. A. ;
Umbas, R. ;
Hamid, A. R. A. H. .
ADVANCED SCIENCE LETTERS, 2017, 23 (07) :6981-6983
[42]   Predicting Biopsy Outcomes During Active Surveillance for Prostate Cancer: External Validation of the Canary Prostate Active Surveillance Study Risk Calculators in Five Large Active Surveillance Cohorts [J].
Drost, Frank Jan H. ;
Nieboer, Daan ;
Morgan, Todd M. ;
Carroll, Peter R. ;
Roobol, Monique J. ;
Trock, Bruce ;
Ehdaie, Behfar ;
Carroll, Peter ;
Filson, Christopher ;
Kim, Jeri ;
Logothetis, Christopher ;
Morgan, Todd ;
Klotz, Laurence ;
Pickles, Tom ;
Hyndman, Eric ;
Moore, Caroline M. ;
Gnanapragasam, Vincent ;
Van Hemelrijck, Mieke ;
Dasgupta, Prokar ;
Bangma, Chris ;
Roobol, Monique ;
Villers, Arnauld ;
Rannikko, Antti ;
Valdagni, Riccardo ;
Perry, Antoinette ;
Hugosson, Jonas ;
Rubio-Briones, Jose ;
Bjartell, Anders ;
Hefermehl, Lukas ;
Shiong, Lee Lui ;
Frydenberg, Mark ;
Kakehi, Yoshiyuki ;
Ha Chung, Byung ;
van der Kwast, Theo ;
van der Linden, Wim ;
Hulsen, Tim ;
de Jonge, Cees ;
Kattan, Mike ;
Ji Xinge ;
Muir, Kenneth ;
Lophatananon, Artitaya ;
Fahey, Michael ;
Steyerberg, Ewout ;
Zhang, Liying ;
Beckmann, Kerri ;
Denton, Brian ;
Hayen, Andrew ;
Boutros, Paul ;
Guo, Wei ;
Benfante, Nicole .
EUROPEAN UROLOGY, 2019, 76 (05) :693-702
[43]   Prostate Cancer With Tertiary Gleason Pattern 5 in Prostate Needle Biopsy Clinicopathologic Findings and Disease Progression [J].
Trpkov, Kiril ;
Zhang, Jianguo ;
Chan, Melissa ;
Eigl, Bernhard J. C. ;
Yilmaz, Asli .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2009, 33 (02) :233-240
[44]   Low Risk Patients Benefit from Extreme Anterior Apical Sampling on Initial Biopsy for Prostate Cancer Diagnosis [J].
Elshafei, Ahmed ;
Kartha, Ganesh ;
Li, Yonghong ;
Moussa, Ayman S. ;
Hatem, Asmaa ;
Gao, Tianming ;
Jones, J. Stephen .
PROSTATE, 2014, 74 (12) :1183-1188
[45]   Role of targeted biopsy, perilesional biopsy, and random biopsy in prostate cancer diagnosis by mpMRI/transrectal ultrasonography fusion biopsy [J].
Giacomo Novara ;
Fabio Zattoni ;
Giovanni Zecchini ;
Alberto Aceti ;
Anna Pellizzari ;
Giordana Ferraioli ;
Maria Carlesso ;
Giulia La Bombarda ;
Alessandro Morlacco ;
Carmelo Salvino Lacognata ;
Alberto Lauro ;
Marina Gardiman ;
Giovanni Betto ;
Nicola Zanovello ;
Fabrizio Dal Moro .
World Journal of Urology, 2023, 41 :3239-3247
[46]   Investigation of the Effectiveness of Prostate Biopsy Density in Predicting Prostate Cancer Under Cognitive and Systematic Biopsy in Multi-Parametric Magnetic Resonance Imaging (mpMRI) [J].
Feng, Jiajin ;
Chen, Keming ;
Tian, Haifu ;
Abdulkarem, Al-qaisi Mohammed ;
Tuo, Yunshang ;
Wang, Xuehao ;
Huang, Bincheng ;
Gao, Yu ;
Lv, Zhiyong ;
He, Rui ;
Li, Guangyong .
CANCER MANAGEMENT AND RESEARCH, 2024, 16 :883-890
[47]   Could Magnetic Resonance Imaging Help to Identify the Presence of Prostate Cancer Before Initial Biopsy? The Development of Nomogram Predicting the Outcomes of Prostate Biopsy in the Chinese Population [J].
Dong Fang ;
Chenglin Zhao ;
Da Ren ;
Wei Yu ;
Rui Wang ;
Huihui Wang ;
Xuesong Li ;
Wenshi Yin ;
Xiaoteng Yu ;
Kunlin Yang ;
Pei Liu ;
Gangzhi Shan ;
Shuqing Li ;
Qun He ;
Xiaoying Wang ;
Zhongcheng Xin ;
Liqun Zhou .
Annals of Surgical Oncology, 2016, 23 :4284-4292
[48]   Prostate Health Index improves multivariable risk prediction of aggressive prostate cancer [J].
Loeb, Stacy ;
Shin, Sanghyuk S. ;
Broyles, Dennis L. ;
Wei, John T. ;
Sanda, Martin ;
Klee, George ;
Partin, Alan W. ;
Sokoll, Lori ;
Chan, Daniel W. ;
Bangma, Chris H. ;
van Schaik, Ron H. N. ;
Slawin, Kevin M. ;
Marks, Leonard S. ;
Catalona, William J. .
BJU INTERNATIONAL, 2017, 120 (01) :61-68
[49]   Role of targeted biopsy, perilesional biopsy, and random biopsy in prostate cancer diagnosis by mpMRI/transrectal ultrasonography fusion biopsy [J].
Novara, Giacomo ;
Zattoni, Fabio ;
Zecchini, Giovanni ;
Aceti, Alberto ;
Pellizzari, Anna ;
Ferraioli, Giordana ;
Carlesso, Maria ;
La Bombarda, Giulia ;
Morlacco, Alessandro ;
Lacognata, Carmelo Salvino ;
Lauro, Alberto ;
Gardiman, Marina ;
Betto, Giovanni ;
Zanovello, Nicola ;
Moro, Fabrizio Dal .
WORLD JOURNAL OF UROLOGY, 2023, 41 (11) :3239-3247
[50]   Does Genotyping of Risk-Associated Single Nucleotide Polymorphisms Improve Patient Selection for Prostate Biopsy when Combined with a Prostate Cancer Risk Calculator? [J].
Butoescu, Valentina ;
Ambroise, Jerome ;
Stainier, Annabelle ;
Dekairelle, Anne-France ;
Gala, Jean-Luc ;
Tombal, Bertrand .
PROSTATE, 2014, 74 (04) :365-371