Re-examining the placement of Hydrostachys using a large-scale phylogenetic approach

被引:1
|
作者
Xu, Zhun [1 ,2 ,3 ]
Folk, Ryan A. [4 ]
Gitzendanner, Matthew A. [5 ]
Hu, Guang-Wan [1 ,2 ,6 ]
Soltis, Pamela S. [3 ]
Soltis, Douglas E. [3 ,5 ]
Wang, Qing-Feng [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Plant Germplasm Enhancement & Specialt, Wuhan Bot Garden, Wuhan 430074, Hubei, Peoples R China
[2] Chinese Acad Sci, Sino Africa Joint Res Ctr, Wuhan 430074, Hubei, Peoples R China
[3] Univ Florida, Florida Museum Nat Hist, Gainesville, FL 32611 USA
[4] Mississippi State Univ, Dept Biol Sci, Mississippi State, MS 39762 USA
[5] Univ Florida, Dept Biol, Gainesville, FL 32611 USA
[6] Hubei Jiangxia Lab, Wuhan 430200, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
1KP; Cornales; Hydrostachys; nuclear genes; phylogenetic placement; plastid genes; RBCL SEQUENCE DATA; RNA; CORNALES; MATK; TREE; LOASACEAE; RDNA; TOOL;
D O I
10.1002/tax.13122
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phylogenetic placement of Hydrostachys (Hydrostachyaceae) has long been enigmatic, the highly divergent morphology of Hydrostachys having prevented its confident placement in any clade of angiosperms. Phylogenetic placements using DNA sequence data have varied, with most studies suggesting a placement within Cornales. We conducted a large-scale phylogenetic analysis based on nuclear and chloroplast datasets to re-examine the relationships of the genus and assess the data sources and methodological factors that may cause alternative placements. Hydrostachys was consistently recovered as a member of Cornales in all of our analyses based on 338 single-copy nuclear genes and 78 chloroplast genes, but the divergent matK sequences of Hydrostachys available in GenBank led to different phylogenetic placements. These highly divergent DNA sequences may make phylogenetic placement problematic, and other factors may also impact the placement, including taxon sampling, long-branch attraction, incomplete lineage sorting, and potential artifacts (from contaminants, paralogs, or assembly errors) in the datasets.
引用
收藏
页码:237 / 248
页数:12
相关论文
共 50 条
  • [21] Large-scale F0 CRISPR screens in vivo using MIC-Drop
    Parvez, Saba
    Brandt, Zachary J. J.
    Peterson, Randall T. T.
    NATURE PROTOCOLS, 2023, 18 (06) : 1841 - 1865
  • [22] Evolutionary relationships of the Critically Endangered frog Ericabatrachus baleensis Largen, 1991 with notes on incorporating previously unsampled taxa into large-scale phylogenetic analyses
    Siu-Ting, Karen
    Gower, David J.
    Pisani, Davide
    Kassahun, Roman
    Gebresenbet, Fikirte
    Menegon, Michele
    Mengistu, Abebe A.
    Saber, Samy A.
    de Sa, Rafael
    Wilkinson, Mark
    Loader, Simon P.
    BMC EVOLUTIONARY BIOLOGY, 2014, 14
  • [23] A fast and powerful linear mixed model approach for genotype-environment interaction tests in large-scale GWAS
    Zhong, Wujuan
    Chhibber, Aparna
    Luo, Lan
    Mehrotra, Devan V.
    Shen, Judong
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [24] Towards large-scale FAME-based bacterial species identification using machine learning techniques
    Slabbinck, Bram
    De Baets, Bernard
    Dawyndt, Peter
    De Vos, Paul
    SYSTEMATIC AND APPLIED MICROBIOLOGY, 2009, 32 (03) : 163 - 176
  • [25] Large-Scale Mapping of Soil Quality Index in Different Land Uses Using Airborne Hyperspectral Data
    Majeed, Israr
    Das, Bhabani Sankar
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [26] A Case Study for Large-Scale Human Microbiome Analysis Using JCVI's Metagenomics Reports (METAREP)
    Goll, Johannes
    Thiagarajan, Mathangi
    Abubucker, Sahar
    Huttenhower, Curtis
    Yooseph, Shibu
    Methe, Barbara A.
    PLOS ONE, 2012, 7 (06):
  • [27] Filtering large-scale event collections using a combination of supervised and unsupervised learning for event trigger classification
    Mehryary, Farrokh
    Kaewphan, Suwisa
    Hakala, Kai
    Ginter, Filip
    JOURNAL OF BIOMEDICAL SEMANTICS, 2016, 7
  • [28] USING HERBARIUM-DERIVED DNAS TO ASSEMBLE A LARGE-SCALE DNA BARCODE LIBRARY FOR THE VASCULAR PLANTS OF CANADA
    Kuzmina, Maria L.
    Braukmann, Thomas W. A.
    Fazekas, Aron J.
    Graham, Sean W.
    Dewaard, Stephanie L.
    Rodrigues, Anuar
    Bennett, Bruce A.
    Dickinson, Timothy A.
    Saarela, Jeffery M.
    Catling, Paul M.
    Newmaster, Steven G.
    Percy, Diana M.
    Fenneman, Erin
    Lauron-Moreau, Aurelien
    Ford, Bruce
    Gillespie, Lynn
    Subramanyam, Rugupathy
    Whitton, Jeannette
    Jennings, Linda
    Metsger, Deborah
    Warne, Connor P.
    Brown, Allison
    Sears, Elizabeth
    Dewaard, Jeremy R.
    Zakharov, Evgeny V.
    Hebert, Paul D. N.
    APPLICATIONS IN PLANT SCIENCES, 2017, 5 (12):
  • [29] Large-scale prediction of human kinase-inhibitor interactions using protein sequences and molecular topological structures
    Cao, Dong-Sheng
    Zhou, Guang-Hua
    Liu, Shao
    Zhang, Liu-Xia
    Xu, Qing-Song
    He, Min
    Liang, Yi-Zeng
    ANALYTICA CHIMICA ACTA, 2013, 792 : 10 - 18
  • [30] An Efficient, Large-Scale Survey of Hepatitis C Viremia in the Democratic Republic of the Congo Using Dried Blood Spots
    Parr, Jonathan B.
    Lodge, Evans K.
    Holzmayer, Vera
    Pepin, Jacques
    Frost, Eric H.
    Fried, Michael W.
    McGivern, David R.
    Lemon, Stanley M.
    Keeler, Corinna
    Emch, Michael
    Mwandagalirwa, Kashamuka
    Tshefu, Antoinette
    Fwamba, Franck
    Muwonga, Jeremie
    Meshnick, Steven R.
    Cloherty, Gavin
    CLINICAL INFECTIOUS DISEASES, 2018, 66 (02) : 254 - 260