Graphical Principal Component Analysis of Multivariate Functional Time Series

被引:2
作者
Tan, Jianbin [1 ]
Liang, Decai [2 ]
Guan, Yongtao [3 ]
Huang, Hui [4 ,5 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
[2] Nankai Univ, Sch Stat & Data Sci, LPMC & KLMDASR, Tianjin, Peoples R China
[3] Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Sch Data Sci, Shenzhen, Peoples R China
[4] Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
[5] Renmin Univ China, Sch Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic functional principal component analysis; Functional time series; Graphical model; Weak separability; Whittle likelihood; MODELS; THEOREM; LASSO;
D O I
10.1080/01621459.2024.2302198
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider multivariate functional time series with a two-way dependence structure: a serial dependence across time points and a graphical interaction among the multiple functions within each time point. We develop the notion of dynamic weak separability, a more general condition than those assumed in literature, and use it to characterize the two-way structure in multivariate functional time series. Based on the proposed weak separability, we develop a unified framework for functional graphical models and dynamic principal component analysis, and further extend it to optimally reconstruct signals from contaminated functional data using graphical-level information. We investigate asymptotic properties of the resulting estimators and illustrate the effectiveness of our proposed approach through extensive simulations. We apply our method to hourly air pollution data that were collected from a monitoring network in China. Supplementary materials for this article are available online.
引用
收藏
页码:3073 / 3085
页数:13
相关论文
共 30 条
[1]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[2]  
Brillinger D.R., 1996, Revista de Econometria, V16, P1, DOI DOI 10.12660/BRE.V16N11996.2878
[3]  
Brillinger D.R., 2001, Classics in Applied Mathematics, DOI DOI 10.1137/1.9780898719246
[4]   Modelling function-valued stochastic processes, with applications to fertility dynamics [J].
Chen, Kehui ;
Delicado, Pedro ;
Muller, Hans-Georg .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) :177-196
[5]   MULTIVARIATE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS: A NORMALIZATION APPROACH [J].
Chiou, Jeng-Min ;
Chen, Yu-Ting ;
Yang, Ya-Fang .
STATISTICA SINICA, 2014, 24 (04) :1571-1596
[6]   Graphical interaction models for multivariate time series [J].
Dahlhaus, R .
METRIKA, 2000, 51 (02) :157-172
[7]  
Dahlhaus R., 2003, HIGHLY STRUCTURED ST, P115, DOI DOI 10.1093/OSO/9780198510550.003.0011
[8]   The joint graphical lasso for inverse covariance estimation across multiple classes [J].
Danaher, Patrick ;
Wang, Pei ;
Witten, Daniela M. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (02) :373-397
[9]   An extension of Mercer theorem to matrix-valued measurable kernels [J].
De Vito, Ernesto ;
Umanita, Veronica ;
Villa, Silvia .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 34 (03) :339-351