Alpha and SSVEP power outperform gamma power in capturing attentional modulation in human EEG

被引:0
作者
Das, Aritra [1 ]
Nandi, Nilanjana [1 ]
Ray, Supratim [1 ,2 ]
机构
[1] Indian Inst Sci, Ctr Neurosci, Bangalore 560012, India
[2] Indian Inst Sci, Ctr Neurosci, Old TIFR Bldg, Bangalore 560012, India
基金
英国惠康基金;
关键词
brain-machine-interface; EEG; neural measures; spatial attention; VISUAL-SPATIAL ATTENTION; NEURONAL SYNCHRONIZATION; SELECTIVE ATTENTION; FIELD; OSCILLATIONS; MECHANISMS; STATE; GAIN; COHERENCE; CORTEX;
D O I
10.1093/cercor/bhad412
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Attention typically reduces power in the alpha (8-12 Hz) band and increases power in gamma (>30 Hz) band in brain signals, as reported in macaque local field potential (LFP) and human electro/magneto-encephalogram (EEG/MEG) studies. In addition, EEG studies often use flickering stimuli that produce a specific measure called steady-state-visually-evoked-potential (SSVEP), whose power also increases with attention. However, effectiveness of these neural measures in capturing attentional modulation is unknown since stimuli and task paradigms vary widely across studies. In a recent macaque study, attentional modulation was more salient in the gamma band of the LFP, compared to alpha or SSVEP. To compare this with human EEG, we designed an orientation change detection task where we presented both static and counterphasing stimuli of matched difficulty levels to 26 subjects and compared attentional modulation of various measures under similar conditions. We report two main results. First, attentional modulation was comparable for SSVEP and alpha. Second, non-foveal stimuli produced weak gamma despite various stimulus optimizations and showed negligible attentional modulation although full-screen gratings showed robust gamma activity. Our results are useful for brain-machine-interfacing studies where suitable features are used for decoding attention, and also provide clues about spatial scales of neural mechanisms underlying attention.
引用
收藏
页数:16
相关论文
共 78 条
[1]   Towards an independent brain-computer interface using steady state visual evoked potentials [J].
Allison, Brendan. Z. ;
McFarland, Dennis J. ;
Schalk, Gerwin ;
Zheng, Shi Dong ;
Jackson, Melody Moore ;
Wolpaw, Jonathan R. .
CLINICAL NEUROPHYSIOLOGY, 2008, 119 (02) :399-408
[2]   Covert attention allows for continuous control of brain-computer interfaces [J].
Bahramisharif, Ali ;
van Gerven, Marcel ;
Heskes, Tom ;
Jensen, Ole .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2010, 31 (08) :1501-1508
[3]   Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials [J].
Bansal, Arjun K. ;
Truccolo, Wilson ;
Vargas-Irwin, Carlos E. ;
Donoghue, John P. .
JOURNAL OF NEUROPHYSIOLOGY, 2012, 107 (05) :1337-1355
[4]   Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks [J].
Bartos, Marlene ;
Vida, Imre ;
Jonas, Peter .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (01) :45-56
[5]   Attentional Modulation of Alpha/Beta and Gamma Oscillations Reflect Functionally Distinct Processes [J].
Bauer, Markus ;
Stenner, Max-Philipp ;
Friston, Karl J. ;
Dolan, Raymond J. .
JOURNAL OF NEUROSCIENCE, 2014, 34 (48) :16117-16125
[6]   Chronux: A platform for analyzing neural signals [J].
Bokil, Hemant ;
Andrews, Peter ;
Kulkarni, Jayant E. ;
Mehta, Samar ;
Mitra, Partha P. .
JOURNAL OF NEUROSCIENCE METHODS, 2010, 192 (01) :146-151
[7]   Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques [J].
Bollimunta, Anil ;
Chen, Yonghong ;
Schroeder, Charles E. ;
Ding, Mingzhou .
JOURNAL OF NEUROSCIENCE, 2008, 28 (40) :9976-9988
[8]   Laminar differences in gamma and alpha coherence in the ventral stream [J].
Buffalo, Elizabeth A. ;
Fries, Pascal ;
Landman, Rogier ;
Buschman, Timothy J. ;
Desimone, Robert .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (27) :11262-11267
[9]   Mechanisms of Gamma Oscillations [J].
Buzsaki, Gyoergy ;
Wang, Xiao-Jing .
ANNUAL REVIEW OF NEUROSCIENCE, VOL 35, 2012, 35 :203-225
[10]   ELECTROPHYSIOLOGICAL EVIDENCE FOR EXISTENCE OF ORINETATION AND SIZE DETECTORS IN HUMAN VISUAL SYSTEM [J].
CAMPBELL, FW ;
MAFFEI, L .
JOURNAL OF PHYSIOLOGY-LONDON, 1970, 207 (03) :635-&