Regolith sintering and 3D printing for lunar construction: An extensive review on recent progress

被引:6
|
作者
Suhaizan, Muhammad Shazwan [1 ]
Tran, Phuong [1 ]
Exner, Ash [1 ]
Falzon, Brian G. [1 ,2 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Australia
[2] RMIT Univ, Space Ind Hub, Melbourne, Australia
关键词
Lunar regolith; Space; Additive manufacturing; ISRU; Regolith sintering; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; LANDING SITE; MICROWAVE; SURFACE; SOIL; MARE; MICROSTRUCTURE; PARAMETERS; EVOLUTION;
D O I
10.1007/s40964-023-00537-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-Situ Resource Utilisation (ISRU) is increasingly being seen as a viable and essential approach to constructing infrastructure for human habitation on the moon. Transporting materials and resources, from Earth to the Moon, is prohibitively expensive and not sustainable for long-term, large-scale development. Various fabrication technologies have been investigated in recent years, designed for extra-terrestrial exploration and settlement. This review presents a comprehensive study on the development of several sintering techniques of lunar regolith simulant to demonstrate its feasibility for ISRU on the moon. Various critical processing parameters are evaluated in pursuit of creating a structural material that can withstand the extreme lunar environment. Key outcomes are summarised and assessed to provide insight into their viability. Finally, current challenges are addressed and potential improvements, and avenues for further research, suggested.
引用
收藏
页码:1715 / 1736
页数:22
相关论文
共 50 条
  • [21] Recent progress in 3D printing piezoelectric materials for biomedical applications
    Zeng, Yushun
    Jiang, Laiming
    He, Qingqing
    Wodnicki, Robert
    Yang, Yang
    Chen, Yong
    Zhou, Qifa
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (01)
  • [22] Progress in Photocurable 3D Printing of Photosensitive Polyurethane: A Review
    Fei, Jianhua
    Rong, Youjie
    Zhu, Lisheng
    Li, Huijie
    Zhang, Xiaomin
    Lu, Ying
    An, Jian
    Bao, Qingbo
    Huang, Xiaobo
    MACROMOLECULAR RAPID COMMUNICATIONS, 2023, 44 (18)
  • [23] Recent Progress on Multi-DOF 3D Printing: A Survey
    Wu C.-M.
    Dai C.-K.
    Wang C.C.L.
    Liu Y.-J.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (09): : 1918 - 1938
  • [24] Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system
    Hua Zhao
    Jihong Zhu
    Shangqin Yuan
    Shaoying Li
    Weihong Zhang
    Frontiers of Mechanical Engineering, 2023, 18
  • [25] Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system
    ZHAO Hua
    ZHU Jihong
    YUAN Shangqin
    LI Shaoying
    ZHANG Weihong
    Frontiers of Mechanical Engineering, 2023, 18 (02)
  • [26] Recent advances in 3D printing of porous ceramics: A review
    Hwa, Lim Chin
    Rajoo, Srithar
    Noor, Alias Mohd
    Ahmad, Norhayati
    Uday, M. B.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2017, 21 (06) : 323 - 347
  • [27] Review of binder jetting 3D printing in the construction industry
    Shakor, Pshtiwan
    Chu, S. H.
    Puzatova, Anastasiia
    Dini, Enrico
    PROGRESS IN ADDITIVE MANUFACTURING, 2022, 7 (04) : 643 - 669
  • [28] 3D printing of smart materials: A review on recent progresses in 4D printing
    Khoo, Zhong Xun
    Teoh, Joanne Ee Mei
    Liu, Yong
    Chua, Chee Kai
    Yang, Shoufeng
    An, Jia
    Leong, Kah Fai
    Yeong, Wai Yee
    VIRTUAL AND PHYSICAL PROTOTYPING, 2015, 10 (03) : 103 - 122
  • [29] Analysis of 3D printing techniques for building construction: a review
    Andjol Bici
    Anna Yunitsyna
    Construction Robotics, 2023, 7 (2) : 107 - 123
  • [30] Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing
    Goulas, Athanasios
    Binner, Jon G. P.
    Harris, Russell A.
    Friel, Ross J.
    APPLIED MATERIALS TODAY, 2017, 6 : 54 - 61