MANet: Multi-branch attention auxiliary learning for lung nodule detection and segmentation

被引:8
作者
Nguyen, Tan-Cong [1 ,3 ,5 ]
Nguyen, Tien-Phat [1 ,4 ,5 ]
Cao, Tri [1 ,5 ]
Dao, Thao Thi Phuong [1 ,5 ,6 ]
Ho, Thi-Ngoc [3 ,5 ]
Nguyen, Tam, V [2 ]
Tran, Minh-Triet [1 ,5 ]
机构
[1] Univ Sci VNUHCM, Ho Chi Minh City, Vietnam
[2] Univ Dayton, Dayton, OH 45469 USA
[3] Univ Social Sci & Humanities VNUHCM, Ho Chi Minh City, Vietnam
[4] John von Neumann Inst VNUHCM, Ho Chi Minh City, Vietnam
[5] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[6] Thong Nhat Hosp, Ho Chi Minh City, Vietnam
关键词
Chest CT; Lung nodule detection; Lung nodule segmentation; Multi-branch attention; IMAGE DATABASE CONSORTIUM; PULMONARY NODULES; NETWORK;
D O I
10.1016/j.cmpb.2023.107748
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: Pulmonary nodule detection and segmentation are currently two primary tasks in analyzing chest computed tomography (Chest CT) in order to detect signs of lung cancer, thereby providing early treatment measures to reduce mortality. Even though there are many proposed methods to reduce false positives for obtaining effective detection results, distinguishing between the pulmonary nodule and background region remains challenging because their biological characteristics are similar and varied in size. The purpose of our work is to propose a method for automatic nodule detection and segmentation in Chest CT by enhancing the feature information of pulmonary nodules. Methods: We propose a new UNet-based backbone with multi-branch attention auxiliary learning mechanism, which contains three novel modules, namely, Projection module, Fast Cascading Context module, and Boundary Enhancement module, to further enhance the nodule feature representation. Based on that, we build MANet, a lung nodule localization network that simultaneously detects and segments precise nodule positions. Furthermore, our MANet contains a Proposal Refinement step which refines initially generated proposals to effectively reduce false positives and thereby produce the segmentation quality. Results: Comprehensive experiments on the combination of two benchmarks LUNA16 and LIDC-IDRI show that our proposed model outperforms state-of-the-art methods in the tasks of nodule detection and segmentation tasks in terms of FROC, IoU, and DSC metrics. Our method reports an average FROC score of 88.11% in lung nodule detection. For the lung nodule segmentation, the results reach an average IoU score of 71.29% and a DSC score of 82.74%. The ablation study also shows the effectiveness of the new modules which can be integrated into other UNet-based models. Conclusions: The experiments demonstrated our method with multi-branch attention auxiliary learning ability are a promising approach for detecting and segmenting the pulmonary nodule instances compared to the original UNet design.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Lung Nodule Detection via Deep Reinforcement Learning [J].
Ali, Issa ;
Hart, Gregory R. ;
Gunabushanam, Gowthaman ;
Liang, Ying ;
Muhammad, Wazir ;
Nartowt, Bradley ;
Kane, Michael ;
Ma, Xiaomei ;
Deng, Jun .
FRONTIERS IN ONCOLOGY, 2018, 8
[2]  
[Anonymous], 2018, 2018 10 INT C MODELL
[3]   iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network [J].
Aresta, Guilherme ;
Jacobs, Colin ;
Araujo, Teresa ;
Cunha, Antonio ;
Ramos, Isabel ;
Ginneken, Bram van ;
Campilho, Aurelio .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[5]  
Azad R., 2022, arXiv
[6]  
Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26
[7]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[8]   CPFNet: Context Pyramid Fusion Network for Medical Image Segmentation [J].
Feng, Shuanglang ;
Zhao, Heming ;
Shi, Fei ;
Cheng, Xuena ;
Wang, Meng ;
Ma, Yuhui ;
Xiang, Dehui ;
Zhu, Weifang ;
Chen, Xinjian .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (10) :3008-3018
[9]   Convolutional neural network-based PSO for lung nodule false positive reduction on CT images [J].
Franca da Silva, Giovanni Lucca ;
Azevedo Valente, Thales Levi ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso ;
Gattass, Marcelo .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 162 :109-118
[10]   SD-UNet: Stripping down U-Net for Segmentation of Biomedical Images on Platforms with Low Computational Budgets [J].
Gadosey, Pius Kwao ;
Li, Yujian ;
Agyekum, Enock Adjei ;
Zhang, Ting ;
Liu, Zhaoying ;
Yamak, Peter T. ;
Essaf, Firdaous .
DIAGNOSTICS, 2020, 10 (02)