SUMSETS CONTAINING A TERM OF A SEQUENCE

被引:0
作者
Chen, Min [1 ]
Tang, Min [1 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
关键词
sumsets; sequences; powers of an integer; POWERS;
D O I
10.1017/S0004972723000904
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S = {s(1), s(2),...} be an unbounded sequence of positive integers with s(n+1)/s(n) approaching alpha as n -> infinity and let ss > max(alpha, 2). We show that for all sufficiently large positive integers l, if A. [0, l] with l is an element of A, gcdA = 1 and |A| >= (2 - k/ lambda ss)l/(lambda + 1), where lambda = [k/ss], then kA boolean AND S not equal theta for 2 < ss <= 3 and k >= 2 ss/(ss - 2) or for ss > 3 and k >= 3.
引用
收藏
页码:420 / 428
页数:9
相关论文
共 8 条