Wire arc additive manufacturing of thin and thick walls made of duplex stainless steel

被引:38
作者
Queguineur, Antoine [1 ,2 ]
Asadi, Reza [1 ]
Ostolaza, Marta [3 ]
Valente, Emilie Hordum [4 ]
Nadimpalli, Venkata Karthik [4 ]
Mohanty, Gaurav [5 ]
Hascoet, Jean-Yves [2 ]
Ituarte, Inigo Flores [1 ]
机构
[1] Tampere Univ, Fac Engn & Nat Sci, Korkeakoulunkatu 6, Tampere 33014, Finland
[2] Ecole Cent Nantes, GeM UMR CNRS 6183, 1 Rue Noe, F-44321 Nantes, France
[3] Univ Basque Country UPV EHU, Dept Mech Engn, Torres Quevedo 1, Bilbao 48013, Spain
[4] Tech Univ Denmark, Dept Civil & Mech Engn, DK-2800 Lyngby, Denmark
[5] Tampere Univ, Mat Sci & Environm Engn, Korkeakoulunkatu 6, Tampere 33014, Finland
基金
芬兰科学院;
关键词
Additive manufacturing; Direct energy deposition; WAAM; Duplex stainless steel; Design of experiment; Ferrite content; CORROSION-RESISTANCE; MECHANICAL-PROPERTIES; FERRITE CONTENT; SHIELDING GAS; MICROSTRUCTURE; WELDABILITY; COMPONENTS; NITROGEN; JOINT;
D O I
10.1007/s00170-023-11560-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wire arc additive manufacturing (WAAM) direct energy deposition is used to process two different duplex stainless steels (DSS) wire chemistries. Macro- and micromechanical response variables relevant to industrialization are studied using a design of the experiment (DoE) approach. The tested operation window shows that the variation of layer height and over-thickness are highly correlated with travel speed and wire feed speed and positively correlated with heat input. The maximum achieved average instantaneous deposition rate is 3.54 kg/h. The use of wire G2205, which contains 5 wt% nickel content, results in a ferrite-to-austenite ratio that is equally balanced, while wire G2209, with 9 wt% nickel, provides a lower ferrite content. The spatial distribution of Fe% is influenced by part geometry and path planning, and higher heat inputs result in coarser microstructures. The manufacturing weaving strategy generates a heterogeneous microstructure characterized by fluctuations in Fe%. Thus, understanding the effect of complex thermal history, higher-dimensional design spaces, and uncertainty quantification is required to drive metal WAAM toward full industrialization.
引用
收藏
页码:381 / 400
页数:20
相关论文
共 59 条
[2]  
Antony J., 2014, Screening Designs, V2nd, P51, DOI [10.1016/B978-0-08-099417-8.00005-5, DOI 10.1016/B978-0-08-099417-8.00005-5]
[3]   Effect of the Temperature in the Mechanical Properties of Austenite, Ferrite and Sigma Phases of Duplex Stainless Steels Using Hardness, Microhardness and Nanoindentation Techniques [J].
Argandona, Gorka ;
Palacio, Jose F. ;
Berlanga, Carlos ;
Biezma, Maria V. ;
Rivero, Pedro J. ;
Pena, Julio ;
Rodriguez, Rafael .
METALS, 2017, 7 (06)
[4]  
ASADI R, 2023, INT J ADV MANUF TECH
[5]   Effect of shielding gas on welding performance and properties of duplex and superduplex stainless steel welds [J].
Bermejo, M. A. Valiente ;
Karlsson, L. ;
Svensson, L-E. ;
Hurtig, K. ;
Rasmuson, H. ;
Frodigh, M. ;
Bengtsson, P. .
WELDING IN THE WORLD, 2015, 59 (02) :239-249
[6]  
Bhatt RB, 1999, J MATER ENG PERFORM, V8, P591
[7]   Physical simulation of additively manufactured super duplex stainless steels - microstructure and properties [J].
Cederberg, Emil ;
Hosseini, Vahid A. ;
Kumara, Chamara ;
Karlsson, Leif .
ADDITIVE MANUFACTURING, 2020, 34
[8]   Microstructural, Mechanical, and Electrochemical Analysis of Duplex and Superduplex Stainless Steels Welded with the Autogenous TIG Process Using Different Heat Input [J].
da Fonseca, Glaucio Soares ;
Rodrigues Barbosa, Luis Otavio ;
Ferreira, Elivelton Alves ;
Xavier, Carlos Roberto ;
de Castro, Jose Adilson .
METALS, 2017, 7 (12)
[9]   Thin-Wall Machining of Light Alloys: A Review of Models and Industrial Approaches [J].
Del Sol, Irene ;
Rivero, Asuncion ;
Lopez de Lacalle, Luis Norberto ;
Juan Gamez, Antonio .
MATERIALS, 2019, 12 (12)
[10]   Duplex stainless steels "475°C embrittlement": influence of the chemical composition on the fatigue crack propagation [J].
Di Cocco, Vittorio ;
Iacoviello, Francesco ;
Ischia, Gloria .
XXIV ITALIAN GROUP OF FRACTURE CONFERENCE, 2017, 2017, 3 :299-307