New proximal bundle algorithm based on the gradient sampling method for nonsmooth nonconvex optimization with exact and inexact information

被引:2
作者
Monjezi, N. Hoseini [1 ]
Nobakhtian, S. [2 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] Univ Isfahan, Fac Math & Stat, Dept Appl Math & Comp Sci, Esfahan, Iran
关键词
Proximal bundle method; Gradient sampling; Inexact information; Nonsmooth optimization; Nonconvex optimization; MINIMIZATION; CONVERGENCE; APPROXIMATE;
D O I
10.1007/s11075-023-01519-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on a descent algorithm for solving nonsmooth nonconvex optimization problems. The proposed method is based on the proximal bundle algorithm and the gradient sampling method and uses the advantages of both. In addition, this algorithm has the ability to handle inexact information, which creates additional challenges. The global convergence is proved with probability one. More precisely, every accumulation point of the sequence of serious iterates is either a stationary point if exact values of gradient are provided or an approximate stationary point if only inexact information of the function and gradient values is available. The performance of the proposed algorithm is demonstrated using some academic test problems. We further compare the new method with a general nonlinear solver and two other methods specifically designed for nonconvex nonsmooth optimization problems.
引用
收藏
页码:765 / 787
页数:23
相关论文
共 37 条
[1]  
Bagirov A., 2014, Introduction to Nonsmooth Optimization, DOI DOI 10.1007/978-3-319-08114-4
[2]   An augmented subgradient method for minimizing nonsmooth DC functions [J].
Bagirov, A. M. ;
Hoseini Monjezi, N. ;
Taheri, S. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 80 (02) :411-438
[3]   Subgradient Method for Nonconvex Nonsmooth Optimization [J].
Bagirov, A. M. ;
Jin, L. ;
Karmitsa, N. ;
Al Nuaimat, A. ;
Sultanova, N. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) :416-435
[4]   Aggregate subgradient method for nonsmooth DC optimization [J].
Bagirov, Adil M. ;
Taheri, Sona ;
Joki, Kaisa ;
Karmitsa, Napsu ;
Makela, Marko M. .
OPTIMIZATION LETTERS, 2021, 15 (01) :83-96
[5]  
BAGIROV AM, 2003, J MATH SCI, V115, P2567, DOI DOI 10.1023/A:1023227716953
[6]   A robust gradient sampling algorithm for nonsmooth, nonconvex optimization [J].
Burke, JV ;
Lewis, AS ;
Overton, ML .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) :751-779
[7]   A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM FOR NONCONVEX, NONSMOOTH CONSTRAINED OPTIMIZATION [J].
Curtis, Frank E. ;
Overton, Michael L. .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (02) :474-500
[8]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[9]  
Ferrier C., 1997, THESIS U P SABATIER
[10]   A proximal bundle method for nonsmooth nonconvex functions with inexact information [J].
Hare, W. ;
Sagastizabal, C. ;
Solodov, M. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (01) :1-28