Spatial distribution of primary radiation damage in microstructures

被引:6
作者
Brand, Matthew I. [1 ]
Obbard, Edward G. [1 ]
Burr, Patrick A. [1 ]
机构
[1] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
关键词
COMPUTER-SIMULATION; IRRADIATION; DISPLACEMENT; NEUTRON; SPECTRA; SOLIDS; ATOMS; SRIM; DPA;
D O I
10.1038/s41529-023-00337-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The leading theory of primary radiation damage in materials, by Norgett, Robinson, and Torrens (NRT), assumes that materials are homogeneous. This is inadequate for most engineering materials, which have rich microstructures. The lack of alternative theories has led to the widespread assumption that the microstructure only affects defect recombination and not defect production. We extend the NRT formalism to account for microstructural variations and explicitly include the damage caused in a phase by primary knock-on atoms that are produced in another nearby phase. Our approach reveals new insight on the interplay between radiation damage and microstructure, and converges to conventional NRT at suitably large length-scales. Applying it to real two-phase nuclear alloys we discover a reversal of primary radiation damage localisation when grain size is < 1 mu m: in some fine-grained superalloys more damage is produced in the matrix than the precipitates, and the opposite is true for coarse-grained superalloys of same composition.
引用
收藏
页数:8
相关论文
共 40 条
[31]   A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013 [J].
Saha, Uttiyoarnab ;
Devan, K. ;
Ganesan, S. .
JOURNAL OF NUCLEAR MATERIALS, 2018, 503 :30-41
[32]  
Smith R., 2005, ATOMIC ION COLLISION
[33]   Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates [J].
Song, Gian ;
Sun, Zhiqian ;
Li, Lin ;
Xu, Xiandong ;
Rawlings, Michael ;
Liebscher, Christian H. ;
Clausen, Bjorn ;
Poplawsky, Jonathan ;
Leonard, Donovan N. ;
Huang, Shenyan ;
Teng, Zhenke ;
Liu, Chain T. ;
Asta, Mark D. ;
Gao, Yanfei ;
Dunand, David C. ;
Ghosh, Gautam ;
Chen, Mingwei ;
Fine, Morris E. ;
Liaw, Peter K. .
SCIENTIFIC REPORTS, 2015, 5
[34]   On the use of SRIM for computing radiation damage exposure [J].
Stoller, R. E. ;
Toloczko, M. B. ;
Was, G. S. ;
Certain, A. G. ;
Dwaraknath, S. ;
Garner, F. A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2013, 310 :75-80
[35]   Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography [J].
Teng, Z. K. ;
Miller, M. K. ;
Ghosh, G. ;
Liu, C. T. ;
Huang, S. ;
Russell, K. F. ;
Fine, M. E. ;
Liaw, P. K. .
SCRIPTA MATERIALIA, 2010, 63 (01) :61-64
[36]   THEORETICAL PHYSICS IN THE METALLURGICAL LABORATORY OF CHICAGO [J].
WIGNER, EP .
JOURNAL OF APPLIED PHYSICS, 1946, 17 (11) :857-863
[37]  
Winterbon K. B., 1970, Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser, V37, P5
[38]  
Ziegler J. F., 1985, Treatise on Heavy-ion Science: Volume 6: Astrophysics, Chemistry, and Condensed Matter, DOI DOI 10.1007/978-1-4615-8103-1_3
[39]   SRIM-2003 [J].
Ziegler, JF .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2004, 219 :1027-1036
[40]  
Zinkle SJ, 2012, COMPREHENSIVE NUCLEAR MATERIALS, VOL 1: BASIC ASPECTS OF RADIATION EFFECTS IN SOLIDS/BASIC ASPECTS OF MULTI-SCALE MODELING, P65, DOI 10.1016/B978-0-08-056033-5.00003-3