Spatial distribution of primary radiation damage in microstructures

被引:3
作者
Brand, Matthew I. [1 ]
Obbard, Edward G. [1 ]
Burr, Patrick A. [1 ]
机构
[1] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
关键词
COMPUTER-SIMULATION; IRRADIATION; DISPLACEMENT; NEUTRON; SPECTRA; SOLIDS; ATOMS; SRIM; DPA;
D O I
10.1038/s41529-023-00337-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The leading theory of primary radiation damage in materials, by Norgett, Robinson, and Torrens (NRT), assumes that materials are homogeneous. This is inadequate for most engineering materials, which have rich microstructures. The lack of alternative theories has led to the widespread assumption that the microstructure only affects defect recombination and not defect production. We extend the NRT formalism to account for microstructural variations and explicitly include the damage caused in a phase by primary knock-on atoms that are produced in another nearby phase. Our approach reveals new insight on the interplay between radiation damage and microstructure, and converges to conventional NRT at suitably large length-scales. Applying it to real two-phase nuclear alloys we discover a reversal of primary radiation damage localisation when grain size is < 1 mu m: in some fine-grained superalloys more damage is produced in the matrix than the precipitates, and the opposite is true for coarse-grained superalloys of same composition.
引用
收藏
页数:8
相关论文
共 40 条
  • [1] Controlling Radiation Damage
    Ackland, Graeme
    [J]. SCIENCE, 2010, 327 (5973) : 1587 - 1588
  • [2] Modelling the interaction of primary irradiation damage and precipitates: Implications for experimental irradiation of zirconium alloys
    Adrych-Brunning, A.
    Gilbert, M. R.
    Sublet, J. -Ch.
    Harte, A.
    Race, C. P.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2018, 498 : 282 - 289
  • [3] [Anonymous], 2016, Annual Book of ASTM Standards, P8, DOI [10.1520/E0521-16, DOI 10.1520/E0521-16]
  • [4] Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission
    Bai, Xian-Ming
    Voter, Arthur F.
    Hoagland, Richard G.
    Nastasi, Michael
    Uberuaga, Blas P.
    [J]. SCIENCE, 2010, 327 (5973) : 1631 - 1634
  • [5] Radiation damage tolerant nanomaterials
    Beyerlein, I. J.
    Caro, A.
    Demkowicz, M. J.
    Mara, N. A.
    Misra, A.
    Uberuaga, B. P.
    [J]. MATERIALS TODAY, 2013, 16 (11) : 443 - 449
  • [6] Ion beam irradiation of nanostructures - A 3D Monte Carlo simulation code
    Borschel, C.
    Ronning, C.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2011, 269 (19) : 2133 - 2138
  • [7] Quick calculation of damage for ion irradiation: implementation in Iradina and comparisons to SRIM
    Crocombette, Jean-Paul
    Van Wambeke, Christian
    [J]. EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2019, 5
  • [8] Atomic-scale design of radiation-tolerant nanocomposites
    Demkowicz, M. J.
    Bellon, P.
    Wirth, B. D.
    [J]. MRS BULLETIN, 2010, 35 (12) : 992 - 998
  • [9] FISPACT-II, 2018, REF INP SPECTR
  • [10] Perspectives on multiscale modelling and experiments to accelerate materials development for fusion
    Gilbert, M. R.
    Arakawa, K.
    Bergstrom, Z.
    Caturla, M. J.
    Dudarev, S. L.
    Gao, F.
    Goryaeva, A. M.
    Hu, S. Y.
    Hu, X.
    Kurtz, R. J.
    Litnovsky, A.
    Marian, J.
    Marinica, M-C
    Martinez, E.
    Marquis, E. A.
    Mason, D. R.
    Nguyen, B. N.
    Olsson, P.
    Osetskiy, Y.
    Senor, D.
    Setyawan, W.
    Short, M. P.
    Suzudo, T.
    Trelewicz, J. R.
    Tsuru, T.
    Was, G. S.
    Wirth, B. D.
    Yang, L.
    Zhang, Y.
    Zinkle, S. J.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2021, 554