INVARIANT SUBSPACES OF WEIGHTED BERGMAN SPACES IN INFINITELY MANY VARIABLES

被引:0
作者
Dan, Hui [1 ]
Guo, Kunyu [2 ,3 ]
Ni, Jiaqi [2 ,3 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610065, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
关键词
Invariant subspace; unitary equivalence; Hilbert module; Hardy space; weighted Bergman space; infinitely many variables; UNITARY EQUIVALENCE; HARDY SUBMODULES; RIGIDITY; OPERATOR;
D O I
10.7900/jot.2021may18.2330
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with polynomially generated multiplier invariant subspaces of the weighted Bergman space A2 beta in infinitely many variables. We completely classify these invariant subspaces under the uni-tary equivalence. Our results not only cover cases of both the Hardy space H2(D infinity 2 ) and the Bergman space A2(D infinity 2 ) in infinitely many variables, but also apply in finite variable setting.
引用
收藏
页码:183 / 204
页数:22
相关论文
共 27 条
[1]  
AGRAWAL OP, 1986, PAC J MATH, V121, P1
[2]  
AHERN PR, 1970, J MATH MECH, V19, P963
[3]   Fatou and brothers Riesz theorems in the infinite-dimensional polydisc [J].
Aleman, Alexandru ;
Olsen, Jan-Fredrik ;
Saksman, Eero .
JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01) :429-447
[4]  
Atiyah M. F., 1969, Introduction to commutative algebra
[5]  
BERCOVICI H., 1985, CBMS REGIONAL C SER, V56
[6]  
BEREZANSKII Y.M., 1986, TRANSL MATH MONOGR, V63
[7]  
CHEN X., 2003, ANAL HILBERT MODULES, V433
[8]  
CHEN XM, 1992, HOUSTON J MATH, V18, P117
[9]  
COLE BJ, 1986, P LOND MATH SOC, V53, P112
[10]   The periodic dilation completeness problem: cyclic vectors in the Hardy space over the infinite-dimensional polydisk [J].
Dan, Hui ;
Guo, Kunyu .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (01) :1-34