Construction and evaluation of gRNA arrays for multiplex CRISPR-Cas9

被引:1
作者
Zun, Gasper [1 ,2 ]
Dobersek, Katja [1 ,3 ]
Petrovic, Uros [1 ,2 ]
机构
[1] Jozef Stefan Inst, Dept Mol & Biomed Sci, Ljubljana, Slovenia
[2] Univ Ljubljana, Biotech Fac, Dept Biol, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Chem & Chem Technol, Dept Chem & Biochem, Ljubljana, Slovenia
关键词
BioBrick assembly; gRNA array; multiplex CRISPR-Cas9 evaluation; marker-free genome editing; yeast Saccharomyces cerevisiae; CRISPR/CAS9;
D O I
10.1002/yea.3833
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endonuclease system CRISPR-Cas9 represents a powerful toolbox for the budding yeast's Saccharomyces cerevisiae genome perturbation. The resulting double-strand breaks are preferentially repaired via highly efficient homologous recombination, which subsequently leads to marker-free genome editing. The goal of this study was to evaluate precise targeting of multiple loci simultaneously. To construct an array of independently expressing guide RNAs (gRNAs), the genes encoding them were assembled through a BioBrick construction procedure. We designed a multiplex CRISPR-Cas9 system for targeting 6 marker genes, whereby the gRNA array was expressed from a single plasmid. To evaluate the performance of the gRNA array, the activity of the designed system was assessed by the success rate of the introduction of perturbations within the target loci: successful gRNA expression, followed by target DNA double-strand breaks formation and their repair by homologous recombination led to premature termination of the coding sequence of the marker genes, resulting in the prevention of growth of the transformants on the corresponding selection media. In conclusion, we successfully introduced up to five simultaneous perturbations within single cells of yeast S. cerevisiae using the multiplex CRISPR-Cas9 system. While this has been done before, we here present an alternative sequential BioBrick assembly with the capability to accommodate many highly similar gRNA-expression cassettes, and an exhaustive evaluation of their performance.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 45 条
  • [1] Multiplex genome editing of microorganisms using CRISPR-Cas
    Adiego-Perez, Belen
    Randazzo, Paola
    Daran, Jean Marc
    Verwaal, Rene
    Roubos, Johannes. A.
    Daran-Lapujade, Pascale
    van der Oost, John
    [J]. FEMS MICROBIOLOGY LETTERS, 2019, 366 (08)
  • [2] Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision
    Bao, Zehua
    HamediRad, Mohammad
    Xue, Pu
    Xiao, Han
    Tasan, Ipek
    Chao, Ran
    Liang, Jing
    Zhao, Huimin
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (06) : 505 - +
  • [3] Homology-Integrated CRISPR-Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae
    Bao, Zehua
    Xiao, Han
    Lang, Jing
    Zhang, Lu
    Xiong, Xiong
    Sun, Ning
    Si, Tong
    Zhao, Huimin
    [J]. ACS SYNTHETIC BIOLOGY, 2015, 4 (05): : 585 - 594
  • [4] ON-target Adverse Events of CRISPR-Cas9 Nuclease: More Chaotic than Expected
    Boutin, Julian
    Cappellen, David
    Rosier, Juliette
    Amintas, Samuel
    Dabernat, Sandrine
    Bedel, Aurelie
    Moreau-Gaudry, Francois
    [J]. CRISPR JOURNAL, 2022, 5 (01): : 19 - 30
  • [5] CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art
    Ciurkot, Klaudia
    Vonk, Brenda
    Gorochowski, Thomas E.
    Roubos, Johannes A.
    Verwaal, Rene
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (147):
  • [6] Multiplex Genome Engineering Using CRISPR/Cas Systems
    Cong, Le
    Ran, F. Ann
    Cox, David
    Lin, Shuailiang
    Barretto, Robert
    Habib, Naomi
    Hsu, Patrick D.
    Wu, Xuebing
    Jiang, Wenyan
    Marraffini, Luciano A.
    Zhang, Feng
    [J]. SCIENCE, 2013, 339 (6121) : 819 - 823
  • [7] Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays
    Daran-Lapujade, P
    Daran, JM
    Kotter, P
    Petit, T
    Piper, MDW
    Pronk, JT
    [J]. FEMS YEAST RESEARCH, 2003, 4 (03) : 259 - 269
  • [8] Domestication reprogrammed the budding yeast life cycle
    De Chiara, Matteo
    Barre, Benjamin P.
    Persson, Karl
    Irizar, Agurtzane
    Vischioni, Chiara
    Khaiwal, Sakshi
    Stenberg, Simon
    Amadi, Onyetugo Chioma
    Zun, Gasper
    Dobersek, Katja
    Taccioli, Cristian
    Schacherer, Joseph
    Petrovic, Uros
    Warringer, Jonas
    Liti, Gianni
    [J]. NATURE ECOLOGY & EVOLUTION, 2022, 6 (04) : 448 - +
  • [9] Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    DiCarlo, James E.
    Norville, Julie E.
    Mali, Prashant
    Rios, Xavier
    Aach, John
    Church, George M.
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (07) : 4336 - 4343
  • [10] Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
    Doench, John G.
    Fusi, Nicolo
    Sullender, Meagan
    Hegde, Mudra
    Vaimberg, Emma W.
    Donovan, Katherine F.
    Smith, Ian
    Tothova, Zuzana
    Wilen, Craig
    Orchard, Robert
    Virgin, Herbert W.
    Listgarten, Jennifer
    Root, David E.
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (02) : 184 - +