Self-powered sensing of power transmission lines galloping based on piezoelectric energy harvesting

被引:23
作者
Gao, Sihang [1 ]
Zeng, Xisong [1 ]
Tao, Bo [1 ]
Ke, Tingjing [2 ]
Feng, Shaoxuan [1 ]
Chen, Yiduo [1 ]
Zhou, Jie [1 ]
Lan, Wenyu [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Key Lab Ind Internet Things & Networked Control, Minist Educ, Chongqing 400065, Peoples R China
[2] State Grid Chongqing Elect Power Co Chongqing, Chongqing 400015, Peoples R China
关键词
Conductor galloping; Power transmission system; Piezoelectric energy harvester; Frequency boost conversion; Self -powered sensing; LOW-FREQUENCY VIBRATIONS; TRIBOELECTRIC NANOGENERATORS; INTERPHASE SPACERS; FAULT-LOCATION; PERFORMANCE; CONVERSION; SENSORS; MOTION;
D O I
10.1016/j.ijepes.2022.108607
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Online monitoring sensors are a feasible solution for conductor galloping that greatly harms the stable operation of power transmission systems. However, power supply that drives sensors has become one of the bottlenecks restricting the development of distributed sensing systems. This work initially proposes harvesting the energy of conductor galloping and joint utilization to assess conductor galloping degree. A swinging piezoelectric energy harvester based on frequency boost conversion is also proposed. The output characteristics of harvester and the physical validation of the scale model of power transmission line galloping are further explored. Experiment results showed a maximum output voltage and current of 29.6 V and 29 mu A, respectively, under the characteristic conditions of conductor galloping. The corresponding load capacity of the harvester reached a maximum power output of 155.58 mu W under minimum resistance of 70 k Omega at 35 cm vibration amplitude and 1.3 Hz frequency. The conductor galloping testing platform indicated that the frequency boost conversion effect was weakened due to the occurrence of torsion movement during conductor galloping, and the output presented a nonlinear vari-ation with the vibration amplitude and frequency. The degree and direction of conductor galloping can be preliminarily judged according to the output trend, and the maximum output power of load capacity of the harvester reached 101.5 mu W under 107 M Omega resistance at 1.3 Hz vibration frequency, validating that the proposed energy harvesting system is promising for self-powered sensing applications in low-power monitoring sensors for conductor galloping.(c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A Self-Powered Portable Power Bank Based on a Hybridized Nanogenerator
    Liu, Long
    Tang, Wei
    Chen, Baodong
    Deng, Chaoran
    Zhong, Wei
    Cao, Xia
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (03):
  • [22] Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing
    Wang, Yitong
    Li, Zihua
    Fu, Hong
    Xu, Bingang
    NANO ENERGY, 2023, 115
  • [23] Enhanced Triboelectric Nanogenerator Based on a Hybrid Cellulose Aerogel for Energy Harvesting and Self-Powered Sensing
    Luo, Chen
    Ma, Hongzhi
    Yu, Hua
    Zhang, Yuhao
    Shao, Yan
    Yin, Bo
    Ke, Kai
    Zhou, Ling
    Zhang, Kai
    Yang, Ming-Bo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (25) : 9424 - 9432
  • [24] A Triboelectric Nanogenerator Based on Bamboo Leaf for Biomechanical Energy Harvesting and Self-Powered Touch Sensing
    Xu, Zhantang
    Chang, Yasheng
    Zhu, Zhiyuan
    ELECTRONICS, 2024, 13 (04)
  • [25] Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Chen, Lijun
    Wang, Tairan
    Shen, Yunchu
    Wang, Fumei
    Chen, Chaoyu
    NANOMATERIALS, 2023, 13 (05)
  • [26] Analysis and optimization of self-powered parallel synchronized switch harvesting on inductor circuit for piezoelectric energy harvesting
    Zhang, Bin
    Liu, Hongsheng
    Hu, Bingxin
    Zhou, Shengxi
    SMART MATERIALS AND STRUCTURES, 2022, 31 (09)
  • [27] Green fabrication of double-sided self-supporting triboelectric nanogenerator with high durability for energy harvesting and self-powered sensing
    Xie, Yibing
    Hu, Jiashun
    Li, Heng
    Mi, Hao-Yang
    Ni, Gaolei
    Zhu, Xiaoshuai
    Jing, Xin
    Wang, Yameng
    Zheng, Guoqiang
    Liu, Chuntai
    Shen, Changyu
    NANO ENERGY, 2022, 93
  • [28] Electrification based devices with encapsulated liquid for energy harvesting, multifunctional sensing, and self-powered visualized detection
    Han, Mengdi
    Yu, Bocheng
    Qiu, Guolin
    Chen, Haotian
    Su, Zongming
    Shi, Mayue
    Meng, Bo
    Cheng, Xiaoliang
    Zhang, Haixia
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (14) : 7382 - 7388
  • [29] Light power resource availability for energy harvesting photovoltaics for self-powered IoT
    Seunarine, Krishna
    Haymoor, Zaid
    Spence, Michael
    Burwell, Gregory
    Kay, Austin
    Meredith, Paul
    Armin, Ardalan
    Carnie, Matt
    JOURNAL OF PHYSICS-ENERGY, 2024, 6 (01):
  • [30] Nature-inspired helical piezoelectric hydrogels for energy harvesting and self-powered human-machine interfaces
    Zhang, Chi
    Jiang, Zhipeng
    Sun, Mengdie
    Augustin-Lawson, Richards
    Kwon, Sun Hwa
    Dong, Lin
    NANO ENERGY, 2025, 136