GLOBAL LARGE-DATA GENERALIZED SOLUTIONS TO A TWO-DIMENSIONAL CHEMOTAXIS SYSTEM STEMMING FROM CRIME MODELLING

被引:10
作者
LI, B. I. N. [1 ]
Xie, L., I [2 ]
机构
[1] Ningbo Univ Technol, Sch Sci, Ningbo 315211, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401131, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2023年 / 28卷 / 10期
基金
中国国家自然科学基金;
关键词
Crime modelling; chemotaxis system; generalized solution; eventual smoothness; long-time behavior; URBAN-CRIME; WELL-POSEDNESS; MATHEMATICAL-MODEL; DIFFUSION MODEL; EXISTENCE; STABILIZATION; PATTERNS; POLICE;
D O I
10.3934/dcdsb.2022167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a chemotaxis system over a bounded domain Omega subset of R-2 of the following form {ut = triangle u - chi del. middot (u/v del u) - u + a, vt = triangle v - v + uv(1 - v) + b, (*) with chi > 0, a >= 0 and b > 0. The particular version of (*) with chi = 2 was proposed by Pitcher to describe the evolution of population dynamics of criminal agents. Recent results reveal that the system (*) associated with Neumann boundary conditions admits a global classical solution, under appropriate smallness conditions on both the initial data and the parameter chi. The present study indicates that nevertheless, for all reasonably regular initial data and any chi > 0, the corresponding Neumann initial-boundary value problem possesses a global generalized solution. Furthermore, it also demonstrates that, whenever a = 0, such global generalized solution becomes bounded and smooth at least eventually. In particular, it approaches the spatial equilibria at exponential rate in the large time limit.
引用
收藏
页码:5123 / 5151
页数:29
相关论文
共 42 条
  • [1] Global well-posedness of logarithmic Keller-Segel type systems
    Ahn, Jaewook
    Kang, Kyungkeun
    Lee, Jihoon
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 : 185 - 211
  • [2] Chemotaxis and growth system with singular sensitivity function
    Aida, M
    Osaki, K
    Tsujikawa, T
    Yagi, A
    Mimura, M
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (02) : 323 - 336
  • [3] Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision
    Bellomo, N.
    Outada, N.
    Soler, J.
    Tao, Y.
    Winkler, M.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (04) : 713 - 792
  • [4] Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues
    Bellomo, N.
    Bellouquid, A.
    Tao, Y.
    Winkler, M.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) : 1663 - 1763
  • [5] Self-organised critical hot spots of criminal activity
    Berestycki, H.
    Nadal, J-P
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2010, 21 (4-5) : 371 - 399
  • [6] EXISTENCE OF SYMMETRIC AND ASYMMETRIC SPIKES FOR A CRIME HOTSPOT MODEL
    Berestycki, Henri
    Wei, Juncheng
    Winter, Matthias
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) : 691 - 719
  • [7] Dynamic and Steady States for Multi-Dimensional Keller-Segel Model with Diffusion Exponent m > 0
    Bian, Shen
    Liu, Jian-Guo
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (03) : 1017 - 1070
  • [8] GLOBAL BIFURCATION OF SOLUTIONS FOR CRIME MODELING EQUATIONS
    Cantrell, Robert Stephen
    Cosner, Chris
    Manasevich, Raul
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (03) : 1340 - 1358
  • [9] GLOBAL BOUNDED SOLUTIONS OF THE HIGHER-DIMENSIONAL KELLER-SEGEL SYSTEM UNDER SMALLNESS CONDITIONS IN OPTIMAL SPACES
    Cao, Xinru
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) : 1891 - 1904
  • [10] Statistical physics of crime: A review
    D'Orsogna, Maria R.
    Perc, Matjaz
    [J]. PHYSICS OF LIFE REVIEWS, 2015, 12 : 1 - 21