Investigating existence results for fractional evolution inclusions with order r ∈ (1,2) in Banach space

被引:4
|
作者
Raja, Marimuthu Mohan [1 ]
Vijayakumar, Velusamy [1 ]
Shukla, Anurag [2 ]
Nisar, Kottakkaran Sooppy [3 ]
Rezapour, Shahram [4 ,5 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[2] Rajkiya Engn Coll Kannauj, Dept Appl Sci, Kannauj 209732, India
[3] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[4] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
cosine families; fractional evolution inclusions; Mainardi's Wright-type function; multivalued map; nonlocal conditions; DIFFERENTIAL-EQUATIONS; APPROXIMATE CONTROLLABILITY;
D O I
10.1515/ijnsns-2021-0368
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This manuscript investigates the issue of existence results for fractional differential evolution inclusions of order r is an element of (1, 2) in the Banach space. In the beginning, we analyze the existence results by referring to the fractional calculations, cosine families, multivalued function, and Martelli's fixed point theorem. The result is also used to investigate the existence of nonlocal fractional evolution inclusions of order r is an element of (1, 2). Finally, a concrete application is given to illustrate our main results.
引用
收藏
页码:2047 / 2060
页数:14
相关论文
共 50 条
  • [1] Investigating the Existence Results for Hilfer Fractional Stochastic Evolution Inclusions of Order 1 < p < 2
    Pradeesh, J.
    Vijayakumar, V.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [2] A Note on the Existence and Controllability Results for Fractional Integrodifferential Inclusions of Order r ∈ (1,2] with Impulses
    Raja, M. Mohan
    Shukla, Anurag
    Nieto, Juan J.
    Vijayakumar, V.
    Nisar, Kottakkaran Sooppy
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [3] Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ? (1,2) with sectorial operators
    Raja, M. Mohan
    Vijayakumar, V.
    CHAOS SOLITONS & FRACTALS, 2022, 159
  • [4] Results on existence and controllability results for fractional evolution inclusions of order 1 < r < 2 with Clarke's subdifferential type
    Raja, M. Mohan
    Vijayakumar, V.
    Udhayakumar, R.
    Nisar, Kottakkaran Sooppy
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (01)
  • [5] Existence results for Riemann–Liouville fractional evolution inclusions in Banach spaces
    El Hadi Ait Dads
    Mohammed Benyoub
    Mohamed Ziane
    Afrika Matematika, 2021, 32 : 317 - 331
  • [6] Existence and continuous dependence results for fractional evolution integrodifferential equations of order r ∈ (1, 2)
    Ma, Yong-Ki
    Raja, M. Mohan
    Vijayakumar, V.
    Shukla, Anurag
    Albalawi, Wedad
    Nisar, Kottakkaran Sooppy
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 9929 - 9939
  • [7] Existence results for Riemann-Liouville fractional evolution inclusions in Banach spaces
    Dads, El Hadi Ait
    Benyoub, Mohammed
    Ziane, Mohamed
    AFRIKA MATEMATIKA, 2021, 32 (1-2) : 317 - 331
  • [8] Existence and optimal control results for Caputo fractional delay Clark's subdifferential inclusions of order r∈(1,2) with sectorial operators
    Raja, Marimuthu Mohan
    Vijayakumar, Velusamy
    Veluvolu, Kalyana Chakravarthy
    Shukla, Anurag
    Nisar, Kottakkaran Sooppy
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (04) : 1832 - 1850
  • [9] Existence and optimal controls for nonlocal fractional evolution equations of order (1,2) in Banach spaces
    Pang, Denghao
    Jiang, Wei
    Niazi, Azmat Ullah Khan
    Sheng, Jiale
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [10] Existence of mild solutions for Hilfer fractional evolution equations in Banach space
    Gou, Haide
    ANNALES POLONICI MATHEMATICI, 2022, 128 (01) : 15 - 38