Vibration control of cantilever beam using poling tuned piezoelectric actuator

被引:28
作者
Singh, Kamalpreet [1 ]
Sharma, Saurav [1 ]
Kumar, Rajeev [1 ]
Talha, Mohammad [1 ]
机构
[1] Indian Inst Technol, Sch Engn, Mandi 175005, Himachal Prades, India
关键词
Piezoelectric material; lumped parameter model; active vibration control; fuzzy logic controller; poling tuning;
D O I
10.1080/15397734.2021.1891934
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents active vibration control of smart cantilever beam using poling tuned piezoelectric actuator. The vibrating response of piezo-laminated cantilever beam is modeled using a lumped parameter approach. The fuzzy logic controller is used to control the vibration and 49 rules have been established to develop the controller. Sensor voltage and derivative of sensor voltage are considered as inputs while the actuator voltage is considered as an output. Different piezoelectric materials are considered for analysis to improve the performance of the piezoelectric actuator layer using poling tuning phenomena which further enhances the control performance. In Poling tuning phenomena, poling is done at an angle due to which different piezoelectric strain coefficients i.e., transverse (d(31) mode), longitudinal (d(33) mode), and shear (d(15) mode) are activated simultaneously and start contributing toward effective piezoelectric strain coefficient. The poling angle corresponding to the maximum magnitude of effective piezoelectric strain coefficient is called an optimized poling angle. Significant enhancement of 60.78% in control performance in PMN-0.42PT is observed at optimum poling angle of 53 degrees whereas, BT-NNb shows 36.75% improvement in control performance at an optimum poling angle 55 degrees. On the other hand, PZT-7A shows a minimum improvement of 15.53% at optimum poling angle 47 degrees.
引用
收藏
页码:2217 / 2240
页数:24
相关论文
共 43 条
[1]   X-ray diffraction study of Ba0.985Na0.015Ti0.985Nb0.015O3, Ba0.6Na0.4Ti0.6Nb0.4O3 and Ba0.3Na0.7Ti0.3Nb0.7O3 compositions [J].
Abdelkefi, Helmi ;
Khemakhem, Hamadi ;
Simon, Annie ;
Darriet, Jacques .
JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 463 (1-2) :423-427
[3]   Piezoelectric fiber composites with interdigitated electrodes [J].
Bent, AA ;
Hagood, NW .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 1997, 8 (11) :903-919
[4]   Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites [J].
Bowen, C. R. ;
Nelson, L. J. ;
Stevens, R. ;
Cain, M. G. ;
Stewart, M. .
JOURNAL OF ELECTROCERAMICS, 2006, 16 (04) :263-269
[5]   Piezoelectric Energy Harvesting Solutions [J].
Calio, Renato ;
Rongala, Udaya Bhaskar ;
Camboni, Domenico ;
Milazzo, Mario ;
Stefanini, Cesare ;
de Petris, Gianluca ;
Oddo, Calogero Maria .
SENSORS, 2014, 14 (03) :4755-4790
[6]   Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 single crystal [J].
Cao, H ;
Schmidt, VH ;
Zhang, R ;
Cao, WW ;
Luo, HS .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (01) :549-554
[7]   Design of satellite control system using optimal nonlinear theory [J].
Carlos Gadelha de Souza, Luiz .
MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2006, 34 (04) :351-364
[8]  
Cattafesta, 2006, P ASME INT MECH ENG, V2006, P621, DOI [10.1115/IMECE2006-14879, DOI 10.1115/IMECE2006-14879]
[9]   Dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 single crystal poled using alternating current [J].
Chang, Wei-Yi ;
Chung, Ching-Chang ;
Luo, Chengtao ;
Kim, Taeyang ;
Yamashita, Yohachi ;
Jones, Jacob L. ;
Jiang, Xiaoning .
MATERIALS RESEARCH LETTERS, 2018, 6 (10) :537-544
[10]   Performance improvement of a piezoelectric bimorph actuator by tailoring geometry [J].
Chattaraj, Nilanjan ;
Ganguli, Ranjan .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2018, 25 (10) :829-835