Ecosystem and soil respiration radiocarbon detects old carbon release as a fingerprint of warming and permafrost destabilization with climate change

被引:6
|
作者
Schuur, Edward A. G. [1 ,2 ]
Pries, Caitlin Hicks [3 ]
Mauritz, Marguerite [4 ]
Pegoraro, Elaine [5 ]
Rodenhizer, Heidi [6 ]
See, Craig [1 ,2 ]
Ebert, Chris [1 ,2 ]
机构
[1] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA
[2] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
[3] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
[4] Univ Texas El Paso, Biol Sci, 500West Univ Ave, El Paso, TX 79902 USA
[5] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA
[6] Woodwell Climate Res Ctr, Falmouth, MA 02540 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2023年 / 381卷 / 2261期
基金
美国国家科学基金会;
关键词
arctic tundra; permafrost soil carbon; climate change; isotopes; radiocarbon; ecosystem respiration; TERRESTRIAL ECOSYSTEMS; ORGANIC-MATTER; NET CARBON; FEEDBACKS; RATES; THAW; PRODUCTIVITY; EXCHANGE; TUNDRA; ACCUMULATION;
D O I
10.1098/rsta.2022.0201
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The permafrost region has accumulated organic carbon in cold and waterlogged soils over thousands of years and now contains three times as much carbon as the atmosphere. Global warming is degrading permafrost with the potential to accelerate climate change as increased microbial decomposition releases soil carbon as greenhouse gases. A 19-year time series of soil and ecosystem respiration radiocarbon from Alaska provides long-term insight into changing permafrost soil carbon dynamics in a warmer world. Nine per cent of ecosystem respiration and 23% of soil respiration observations had radiocarbon values more than 50% lower than the atmospheric value. Furthermore, the overall trend of ecosystem and soil respiration radiocarbon values through time decreased more than atmospheric radiocarbon values did, indicating that old carbon degradation was enhanced. Boosted regression tree analyses showed that temperature and moisture environmental variables had the largest relative influence on lower radiocarbon values. This suggested that old carbon degradation was controlled by warming/permafrost thaw and soil drying together, as waterlogged soil conditions could protect soil carbon from microbial decomposition even when thawed. Overall, changing conditions increasingly favoured the release of old carbon, which is a definitive fingerprint of an accelerating feedback to climate change as a consequence of warming and permafrost destabilization. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.
引用
收藏
页数:20
相关论文
共 31 条
  • [1] Investigating Thaw and Plant Productivity Constraints on Old Soil Carbon Respiration From Permafrost
    Mauritz, Marguerite
    Pegoraro, Elaine
    Ogle, Kiona
    Ebert, Christopher
    Schuur, Edward A. G.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2021, 126 (06)
  • [2] Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic
    Schuur, Edward A. G.
    Abbott, Benjamin W.
    Commane, Roisin
    Ernakovich, Jessica
    Euskirchen, Eugenie
    Hugelius, Gustaf
    Grosse, Guido
    Jones, Miriam
    Koven, Charlie
    Leshyk, Victor
    Lawrence, David
    Loranty, Michael M.
    Mauritz, Marguerite
    Olefeldt, David
    Natali, Susan
    Rodenhizer, Heidi
    Salmon, Verity
    Schaedel, Christina
    Strauss, Jens
    Treat, Claire
    Turetsky, Merritt
    ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, 2022, 47 : 343 - 371
  • [3] Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming
    Pegoraro, Elaine F.
    Mauritz, Marguerite E.
    Ogle, Kiona
    Ebert, Christopher H.
    Schuur, Edward A. G.
    GLOBAL CHANGE BIOLOGY, 2021, 27 (06) : 1293 - 1308
  • [4] Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change
    Gaglioti, Benjamin V.
    Mann, Daniel H.
    Jones, Benjamin M.
    Pohlman, John W.
    Kunz, Michael L.
    Wooller, Matthew J.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2014, 119 (08) : 1630 - 1651
  • [5] Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems
    Kwon, Min Jung
    Natali, Susan M.
    Pries, Caitlin E. Hicks
    Schuur, Edward A. G.
    Steinhof, Axel
    Crummer, K. Grace
    Zimov, Nikita
    Zimov, Sergey A.
    Heimann, Martin
    Kolle, Olaf
    Goeckede, Mathias
    GLOBAL CHANGE BIOLOGY, 2019, 25 (04) : 1315 - 1325
  • [6] Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and Δ14C
    Pries, Caitlin E. Hicks
    Schuur, Edward A. G.
    Crummer, Kathryn G.
    GLOBAL CHANGE BIOLOGY, 2013, 19 (02) : 649 - 661
  • [7] Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem
    Li, Fei
    Peng, Yunfeng
    Chen, Leiyi
    Yang, Guibiao
    Abbott, Benjamin W.
    Zhang, Dianye
    Fang, Kai
    Wang, Guanqin
    Wang, Jun
    Yu, Jianchun
    Liu, Li
    Zhang, Qiwen
    Chen, Kelong
    Mohammat, Anwar
    Yang, Yuanhe
    FUNCTIONAL ECOLOGY, 2020, 34 (04) : 911 - 922
  • [8] Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra
    Pries, Caitlin E. Hicks
    Schuur, Edward A. G.
    Natali, Susan M.
    Crummer, K. Grace
    NATURE CLIMATE CHANGE, 2016, 6 (02) : 214 - +
  • [9] Different responses of soil respiration to climate change in permafrost and non-permafrost regions of the Tibetan plateau from 1979 to 2018
    Pan, Yongjie
    Li, Xia
    Li, Suosuo
    Li, Zhaoguo
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (14) : 7198 - 7212
  • [10] Warming increases the relative change in the turnover rate of decadally cycling soil carbon in microbial biomass carbon and soil respiration
    Liu, Dan
    Zhang, Wenling
    Xiong, Chunmei
    Nie, Qingyu
    FRONTIERS IN EARTH SCIENCE, 2023, 10