Retain the austenite via diffusion control under electropulsing to improve the mechanical properties of the AISI 420 stainless steel

被引:5
作者
Fu, Xingguo [1 ,2 ]
Xu, Xiaofeng [1 ,2 ]
Zhao, Yang [3 ,4 ]
Chen, Dihui [1 ,2 ]
Wu, Zhicheng [1 ,2 ]
Yan, Xudong [1 ,2 ]
Zhou, Yachong [1 ,2 ]
Yu, Yongqiang [1 ,2 ]
机构
[1] Jilin Univ, Key Lab Automobile Mat, Minist Educ, Changchun, Peoples R China
[2] Jilin Univ, Dept Mat Sci & Engn, Changchun, Peoples R China
[3] Jilin Univ, Weihai Inst Bion, Sch Mat Sci & Engn, Weihai, Peoples R China
[4] Jilin Univ, Key Lab Engn Bion, Minist Educ, Changchun 130000, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 29卷
基金
中国国家自然科学基金;
关键词
Electropulsing; Retained austenite; Microstructure; AISI 420 stainless steel; Diffusion; TEMPERED MARTENSITE; ELECTRIC-CURRENT; GRAIN-SIZE; CARBON; MICROSTRUCTURE; STABILITY; TRANSFORMATION;
D O I
10.1016/j.jmrt.2024.01.177
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Retained austenite (RA) can efficiently increase the plasticity of steel with high tensile strength. In this work, electropulsing was used to improve the mechanical properties of the steel by stabilizing RA. AISI 420 stainless steel with ultra-high strength (1720 MPa) and 7.9 % elongation was prepared by electropulsing quenching (EQ). The extremely fast heating rate of the pulsed current results in an instantaneous phase transition, which limits the growth of the prior austenite grains (PAGs) and rapidly dissolves part of the carbide, enriching the carbon element near the carbide and obtains the RA during the cooling process. After electropulsing quenching then tempering (EQ + ET), the volume fraction of austenite increased from 4.4 % (EQ) to 11.8 % (EQ + ET), which is attributed to pulsed current promoting the diffusion of carbon from martensite to austenite in the tempering process. And the process leads to austenite reversion and improves the stability of RA. As a result, the EQ + ET sample had a good strength-plasticity combination (ultimate tensile strength 1527 MPa, elongation 14.1 %). These findings provide guidance for the regulation of the microstructure and mechanical properties of AISI 420 stainless steel.
引用
收藏
页码:1665 / 1674
页数:10
相关论文
共 36 条
  • [1] Mechanical behavior of additive manufactured AISI 420 martensitic stainless steel
    Alam, Mohammad K.
    Mehdi, Mehdi
    Urbanic, Ruth Jill
    Edrisy, Afsaneh
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773
  • [2] Influence of tempering treatment on microstructure and pitting corrosion of 13 wt.% Cr martensitic stainless steel
    Bonagani, Sunil Kumar
    Bathula, Vishwanadh
    Kain, Vivekanand
    [J]. CORROSION SCIENCE, 2018, 131 : 340 - 354
  • [3] Martensitic stainless steel AISI 420-mechanical properties, creep and fracture toughness
    Brnic, J.
    Turkalj, G.
    Canadija, M.
    Lanc, D.
    Krscanski, S.
    [J]. MECHANICS OF TIME-DEPENDENT MATERIALS, 2011, 15 (04) : 341 - 352
  • [4] Determination of Ms temperature in steels:: A Bayesian neural network model
    Capdevila, C
    Caballero, FG
    De Andrés, CG
    [J]. ISIJ INTERNATIONAL, 2002, 42 (08) : 894 - 902
  • [5] Six decades of the Hall-Petch effect - a survey of grain-size strengthening studies on pure metals
    Cordero, Z. C.
    Knight, B. E.
    Schuh, C. A.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2016, 61 (08) : 495 - 512
  • [6] THERMODYNAMICS OF PHASE-TRANSITIONS IN CURRENT-CARRYING CONDUCTORS
    DOLINSKY, Y
    ELPERIN, T
    [J]. PHYSICAL REVIEW B, 1993, 47 (22): : 14778 - 14785
  • [7] Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel
    Escobar, J. D.
    Delfino, P. M.
    Ariza-Echeverri, E. A.
    Carvalho, F. M.
    Schell, N.
    Stark, A.
    Rodrigues, T. A.
    Oliveira, J. P.
    Avila, J. A.
    Goldenstein, H.
    Tschiptschin, A. P.
    [J]. MATERIALS CHARACTERIZATION, 2021, 182 (182)
  • [8] Meta-equilibrium transition microstructure for maximum austenite stability and minimum hardness in a Ti-stabilized supermartensitic stainless steel
    Escobar, J. D.
    Oliveira, J. P.
    Salvador, C. A. F.
    Faria, G. A.
    Poplawsky, J. D.
    Rodriguez, J.
    Mei, P. R.
    Babu, S. S.
    Ramirez, A. J.
    [J]. MATERIALS & DESIGN, 2018, 156 : 609 - 621
  • [9] Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: Segregation, partitioning and carbide precipitation
    Escobar, J. D.
    Poplawsky, J. D.
    Faria, G. A.
    Rodriguez, J.
    Oliveira, J. P.
    Salvador, C. A. F.
    Mei, P. R.
    Babu, S. S.
    Ramirez, A. J.
    [J]. MATERIALS & DESIGN, 2018, 140 : 95 - 105
  • [10] Effect of pulsed current on plastic deformation of Inconel 718 under high strain rate and high temperature conditions
    Fan, Yihang
    Fan, Huiyou
    Hao, Zhaopeng
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 943