Testing Abstractions for Cyber-Physical Control Systems

被引:2
|
作者
Mandrioli, Claudio [1 ]
Carlsson, Max Nyberg [2 ]
Maggio, Martina [3 ]
机构
[1] Univ Luxembourg, Ave JF Kennedy 29, L-1855 Luxembourg, Luxembourg
[2] Lund Univ, Ole Romers Vag 1, SE-22363 Lund, Sweden
[3] Saarland Univ, Saarbrucken Campus, D-66123 Saarbrucken, Germany
关键词
Cyber-physical systems; software testing; X-in-the-loop testing; VERIFICATION;
D O I
10.1145/3617170
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Control systems are ubiquitous and often at the core of Cyber-Physical Systems, like cars and aeroplanes. They are implemented as embedded software that interacts in closed loop with the physical world through sensors and actuators. As a consequence, the software cannot just be tested in isolation. To close the loop in a testing environment and root causing failure generated by different parts of the system, executable models are used to abstract specific components. Different testing setups can be implemented by abstracting different elements: The most common ones are model-in-the-loop, software-in-the-loop, hardware-in-the-loop, and real-physics-in-the-loop. In this article, we discuss the properties of these setups and the types of faults they can expose. We develop a comprehensive case study using the Crazyflie, a drone whose software and hardware are open source. We implement all the most common testing setups and ensure the consistent injection of faults in each of them. We inject faults in the control system and we compare with the nominal performance of the non-faulty software. Our results show the specific capabilities of the different setups in exposing faults. Contrary to intuition and previous literature, we show that the setups do not belong to a strict hierarchy, and they are best designed to maximize the differences across them rather than to be as close as possible to reality.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Optimal control and learning for cyber-physical systems
    Wan, Yan
    Yang, Tao
    Yuan, Ye
    Lewis, Frank L.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (06) : 1799 - 1802
  • [32] Resilient Control and Safety for Cyber-Physical Systems
    Lukina, Anna
    Grosu, Radu
    Tiwari, Ashish
    Smolka, Scott A.
    Yang, Junxing
    Esterle, Lukas
    2018 IEEE 3RD WORKSHOP ON MONITORING AND TESTING OF CYBER-PHYSICAL SYSTEMS (MT-CPS 2018), 2018, : 16 - 17
  • [33] Separation of learning and control for cyber-physical systems?
    Malikopoulos, Andreas A.
    AUTOMATICA, 2023, 151
  • [34] Secure Control of Networked Cyber-Physical Systems
    Satchidanandan, Bharadwaj
    Kumar, P. R.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 283 - 289
  • [35] Fault Tolerance Control in Cyber-Physical Systems
    Chemashkin, Fedor Y.
    Zhilenkov, Andrei A.
    PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2019, : 1169 - 1171
  • [36] Towards Resilient Cyber-Physical Control Systems
    Salles-Loustau, Gabriel
    Zonouz, Saman
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 662 - 666
  • [37] Deployment Architectures for Cyber-Physical Control Systems
    Tseng, Shih-Hao
    Anderson, James
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 5287 - 5294
  • [38] Optimal Information Control in Cyber-Physical Systems
    Soleymani, Touraj
    Hirche, Sandra
    Baras, John S.
    IFAC PAPERSONLINE, 2016, 49 (22): : 1 - 6
  • [39] A Process for Sound Conformance Testing of Cyber-Physical Systems
    Araujo, Hugo
    Carvalho, Gustavo
    Sampaio, Augusto
    Mousavi, Mohammad Reza
    Taromirad, Masoumeh
    10TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS - ICSTW 2017, 2017, : 46 - 50
  • [40] Testing cyber-physical systems with explicit output coverage
    Peltomaki, Jarkko
    Winsten, Jesper
    Methais, Maxime
    Porres, Ivan
    2024 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS, ICSTW 2024, 2024, : 128 - 136