Direct growth of graphene on hyper-doped silicon to enhance carrier transport for infrared photodetection

被引:10
作者
Yu, Zhiguo [1 ,2 ,3 ]
Cong, Jingkun [1 ,2 ]
Khan, Afzal [1 ,2 ]
Hang, Pengjie [1 ,2 ]
Yang, Deren [1 ,2 ,3 ]
Yu, Xuegong [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Hangzhou Global Sci & Technol Innovat Ctr HIC, Xiaoshan 311200, Peoples R China
基金
中国国家自然科学基金;
关键词
hyper-doped silicon; graphene-Si heterostructure; growth of graphene; self-powered photodetector; LASER;
D O I
10.1088/1361-6528/ad143d
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The importance of infrared photodetectors cannot be overstated, especially in fields such as security, communication, and military. While silicon-based infrared photodetectors are widely used due to the maturity of the semiconductor industry, their band gap of 1.12 eV limits their infrared light absorption above 1100 nm, making them less effective. To overcome this limitation, we report a novel infrared photodetector prepared by growing graphene on the surface of zinc hyper-doped silicon. This technique utilizes hyper-doping to introduce deep level assisted infrared light absorption benefit from the enhanced carrier collection capacity of graphene. Without introducing new energy consumption, the hyper-doped substrate annealing treatment is completed during the growth of graphene. By the improvement of transport and collection of charge carriers, the graphene growth adjusts the band structure to upgrade electrode contact, resulting in a response of 1.6 mA W-1 under laser irradiation with a wavelength of 1550 nm and a power of 2 mW. In comparison, the response of the photodetector without graphene was only 0.51 mA W-1, indicating a three-fold performance improvement. Additionally, the device has lower dark current and lower noise current, resulting in a noise equivalent power of 7.6 x 10-8 W Hz-0.5. Thus, the combination of transition metal hyper-doping and graphene growth technology has enormous potential for developing the next generation of infrared photodetectors.
引用
收藏
页数:8
相关论文
共 25 条
[1]   A Multilayer-Graphene/Silicon Infrared Schottky Photo-Diode [J].
Apicella, Valerio ;
Fasasi, Teslim A. Inde ;
Wang, Shu ;
Lei, Sipeng ;
Ruotolo, Antonio .
ADVANCED ELECTRONIC MATERIALS, 2019, 5 (12)
[2]   Direct Growth of Graphene Nanowalls on Silicon Using Plasma-Enhanced Atomic Layer Deposition for High-Performance Si-Based Infrared Photodetectors [J].
Cong, Jingkun ;
Khan, Afzal ;
Li, Jiajun ;
Wang, Ying ;
Xu, Mingsheng ;
Yang, Deren ;
Yu, Xuegong .
ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (11) :5048-5058
[3]   Zinc-hyperdoped silicon photodetectors fabricated by femtosecond laser with sub-bandgap photoresponse [J].
Fu, Jiawei ;
Cong, Jingkun ;
Cheng, Li ;
Yang, Deren ;
Yu, Xuegong .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2022, 37 (12)
[4]   Hyperdoped Crystalline Silicon for Infrared Photodetectors by Pulsed Laser Melting: A Review [J].
Fu, Jiawei ;
Yang, Deren ;
Yu, Xuegong .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2022, 219 (14)
[5]   Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector [J].
Garcia-Hemme, E. ;
Garcia-Hernansanz, R. ;
Olea, J. ;
Pastor, D. ;
del Prado, A. ;
Martil, I. ;
Gonzalez-Diaz, G. .
APPLIED PHYSICS LETTERS, 2014, 104 (21)
[6]   On the Optoelectronic Mechanisms Ruling Ti-hyperdoped Si Photodiodes [J].
Garcia-Hemme, Eric ;
Caudevilla, Daniel ;
Algaidy, Sari ;
Perez-Zenteno, Francisco ;
Garcia-Hernansanz, Rodrigo ;
Olea, Javier ;
Pastor, David ;
del Prado, Alvaro ;
San Andres, Enrique ;
Martil, Ignacio ;
Gonzalez-Diaz, German .
ADVANCED ELECTRONIC MATERIALS, 2022, 8 (02)
[7]   CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band [J].
Geis, M. W. ;
Spector, S. J. ;
Grein, M. E. ;
Schulein, R. T. ;
Yoon, J. U. ;
Lennon, D. M. ;
Deneault, S. ;
Gan, F. ;
Kaertner, F. X. ;
Lyszczarz, T. M. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (2-4) :152-154
[8]   Black Silicon Photodetector with Excellent Comprehensive Properties by Rapid Thermal Annealing and Hydrogenated Surface Passivation [J].
Huang, Song ;
Wu, Qiang ;
Jia, Zixi ;
Jin, Xiaorong ;
Fu, Xianhui ;
Huang, Hui ;
Zhang, Xiaodan ;
Yao, Jianghong ;
Xu, Jingjun .
ADVANCED OPTICAL MATERIALS, 2020, 8 (07)
[9]   Silicon photonics [J].
Jalali, Bahrain ;
Fathpour, Sasan .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) :4600-4615
[10]   Ultrahigh Photogain Short-Wave Infrared Detectors Enabled by Integrating Graphene and Hyperdoped Silicon [J].
Jiang, Hao ;
Wang, Mao ;
Fu, Jintao ;
Li, Zhancheng ;
Shaikh, Mohd Saif ;
Li, YunJie ;
Nie, Changbin ;
Sun, Feiying ;
Tang, Linlong ;
Yang, Jun ;
Qin, Tianshi ;
Zhou, Dahua ;
Shen, Jun ;
Sun, Jiuxun ;
Feng, Shuanglong ;
Zhu, Meng ;
Kentsch, Ulrich ;
Zhou, Shengqiang ;
Shi, Haofei ;
Wei, Xingzhan .
ACS NANO, 2022, 16 (08) :12777-12785