Nonlocal critical exponent singular problems under mixed Dirichlet-Neumann boundary conditions

被引:4
作者
Mukherjee, Tuhina [1 ]
Pucci, Patrizia [2 ]
Sharma, Lovelesh [1 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur, India
[2] Univ Perugia, Dipartimento Matemat & Informat, Perugia, Italy
关键词
Fractional Laplacian; Mixed boundary conditions; Critical exponent; Singular nonlinearity; Nehari manifold; STRONG MAXIMUM PRINCIPLE; POSITIVE SOLUTIONS; FRACTIONAL LAPLACIAN; ASYMPTOTIC-BEHAVIOR; ELLIPTIC-EQUATIONS; CONCAVE; MULTIPLICITY; EXISTENCE; MODEL;
D O I
10.1016/j.jmaa.2023.127843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following singular problem, under mixed Dirichlet-Neumann boundary conditions, and involving the fractional Laplacian {(-Delta)(s)u = lambda u(-q) + u(2s)*(-1), u > 0 in Omega, (P-lambda) A(u) = 0 on partial derivative Omega = Sigma(D) boolean OR Sigma(N), where Omega R-N is a bounded domain with smooth boundary partial derivative Omega, 1/2 < s < 1, lambda. > 0 is a real parameter, 0 < q< 1, N> 2s, 2(s)* = 2N/(N - 2s) and A(u) = u chi(Sigma D) + partial derivative(v)u chi(Sigma N) partial derivative(v) = partial derivative/partial derivative v. Here Sigma(D), Sigma(N) are smooth (N - 1) dimensional submanifolds of partial derivative Omega such that Sigma(D) boolean OR Sigma(N) = partial derivative Omega, Sigma(D) boolean AND Sigma(N) = empty set and Sigma(D) boolean AND (Sigma(N)) over bar = tau' is a smooth (N - 2) dimensional submanifold of partial derivative Omega. Within a suitable range of lambda, we establish existence of at least two opposite energy solutions for (P-lambda) using the standard Nehari manifold technique. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 35 条
[1]  
Abdellaoui B, 2006, ADV DIFFERENTIAL EQU, V11, P667
[2]  
Abdellaoui B, 2004, ADV NONLINEAR STUD, V4, P503
[3]   A NONLOCAL CONCAVE-CONVEX PROBLEM WITH NONLOCAL MIXED BOUNDARY DATA [J].
Abdellaoui, Boumediene ;
Dieb, Abdelrazek ;
Valdinoci, Enrico .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (03) :1103-1120
[4]   FRACTIONAL OPERATORS WITH INHOMOGENEOUS BOUNDARY CONDITIONS: ANALYSIS, CONTROL, AND DISCRETIZATION [J].
Antilt, Harbir ;
Pfefferer, Johannes ;
Rogovs, Sergejs .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (05) :1395-1426
[5]   ON SOLUTIONS OF ELLIPTIC-EQUATIONS SATISFYING MIXED BOUNDARY-CONDITIONS [J].
AZZAM, A ;
KREYSZIG, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (02) :254-262
[6]   Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions [J].
Barrios, Begona ;
Medina, Maria .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) :475-495
[7]   Semilinear problems for the fractional laplacian with a singular nonlinearity [J].
Barrios, Begona ;
De Bonis, Ida ;
Medina, Maria ;
Peral, Ireneo .
OPEN MATHEMATICS, 2015, 13 :390-407
[8]   A one dimensional heat equation with mixed boundary conditions [J].
Bonfim, V ;
Neves, AF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (02) :319-338
[9]   EXISTENCE, UNIQUENESS AND ASYMPTOTIC BEHAVIOUR FOR FRACTIONAL POROUS MEDIUM EQUATIONS ON BOUNDED DOMAINS [J].
Bonforte, Matteo ;
Sire, Yannick ;
Luis Vaiquez, Juan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (12) :5725-5767
[10]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71