On stabilization of solutions of second-order semilinear parabolic equations on closed manifolds

被引:5
作者
Tunitsky, D. V. [1 ]
机构
[1] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Moscow, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
the Kolmogorov-Petrovskii-Piskunov-Fisher equation; second-order parabolic equation; semilinear equation on manifold; weak solution; stabilization;
D O I
10.4213/im9354e
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with problems of existence, uniqueness, and stabilization of weak solutions of one class of semilinear second-order parabolic differential equations on closed manifolds. These equations are inhomogeneous analogues of the Kolmogorov-Petrovskii-Piskunov-Fisher equation, and have significant applied and mathematical value.
引用
收藏
页码:817 / 834
页数:18
相关论文
共 24 条
[1]  
[Anonymous], 1976, Prentice-Hall Series in Modern Analysis
[2]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[3]  
Courant R., 1964, Metody matematicheskoi fiziki: Uravneniya v chastnykh proizvodnykh, VII
[4]  
DETURCK DM, 1983, J DIFFER GEOM, V18, P157
[5]  
Evans LC., 2010, Partial Differential Equations, V2
[6]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[7]  
Gilbarg D., 1989, Grundlehren Math. Wiss., V224
[8]  
Hess P., 1991, Pitman Research Notes in Mathematics Series, V247
[9]  
Hormander L., 1986, Grundlehren Math. Wiss., V257
[10]  
Kolmogorov A. N., 1937, Etude de l'equation de la diffusion avec croissance de la quantite de mati`ere