The Yamabe flow on asymptotically flat manifolds

被引:1
作者
Chen, Eric [1 ]
Wang, Yi [2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2023年 / 2023卷 / 803期
关键词
CONVERGENCE; MASS; EXISTENCE; EQUATIONS;
D O I
10.1515/crelle-2023-0052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Yamabe flow starting from an asymptotically flat manifold ( M-n , g(0) ). We show that the flow converges to an asymptotically flat, scalar flat metric in a weighted global sense if Y(M, [g(0)] ) > 0, and show that the flow does not converge otherwise. If the scalar curvature is nonnegative and integrable, then the ADM mass at time infinity drops by the limit of the total scalar curvature along the flow.
引用
收藏
页码:61 / 101
页数:41
相关论文
共 38 条