Computer-Aided Engineering of a Non-Phosphorylating Glyceraldehyde-3-Phosphate Dehydrogenase to Enable Cell-Free Biocatalysis

被引:2
作者
Mallinson, Sam J. B. [1 ]
Dessaux, Delphine [2 ]
Barbe, Sophie [2 ]
Bomble, Yannick J. [1 ]
机构
[1] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA
[2] Univ Toulouse, Toulouse Biotechnol Inst TBI, CNRS, INRAE,INSA,ANITI, F-31077 Toulouse, France
基金
美国能源部;
关键词
computational protein design; molecular dynamics; multistate enzyme design; glyceraldehyde-3-phosphatedehydrogenase; cofactor affinity; protein engineering; cell-free biocatalysis; DEPENDENT ALDEHYDE DEHYDROGENASE; PARTICLE MESH EWALD; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; COENZYME SPECIFICITY; CATALYTIC MECHANISM; PROTEIN DESIGN; VIBRIO-HARVEYI; COFACTOR; SUBSTRATE;
D O I
10.1021/acscatal.3c01452
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Redox cofactor utilization is one of the major barriersto therealization of efficient and cost-competitive cell-free biocatalysis,especially where multiple redox steps are concerned. The design ofversatile, cofactor balanced modules for canonical metabolic pathways,such as glycolysis, is one route to overcoming such barriers. Here,we set up a computer-aided design framework to engineer the non-phosphorylatingglyceraldehyde-3-phosphate dehydrogenase (GapN) from Streptococcus mutans for enabling an NADH linkedefficient cell-free glycolytic pathway with a net zero ATP usage.This rational design approach combines molecular dynamics simulationswith a multistate computational design method that allowed us to considerdifferent conformational states encountered along the GapN enzymecatalytic cycle. In particular, the cofactor flip, characteristicof this enzyme family and occurring before product hydrolysis, wastaken into account to redesign the cofactor binding pocket for NAD(+) utilization. While GapN exhibits only trace activity withNAD(+), a & SIM;10,000-fold enhancement of this activitywas achieved, corresponding to a recovery of & SIM;72% of the catalyticefficiency of the wild-type enzyme on NADP(+), with a GapNenzyme harboring only 5 mutations.
引用
收藏
页码:11781 / 11797
页数:17
相关论文
共 58 条
  • [21] Improvements to the APBS biomolecular solvation software suite
    Jurrus, Elizabeth
    Engel, Dave
    Star, Keith
    Monson, Kyle
    Brandi, Juan
    Felberg, Lisa E.
    Brookes, David H.
    Wilson, Leighton
    Chen, Jiahui
    Liles, Karina
    Chun, Minju
    Li, Peter
    Gohara, David W.
    Dolinsky, Todd
    Konecny, Robert
    Koes, David R.
    Nielsen, Jens Erik
    Head-Gordon, Teresa
    Geng, Weihua
    Krasny, Robert
    Wei, Guo-Wei
    Holst, Michael J.
    McCammon, J. Andrew
    Baker, Nathan A.
    [J]. PROTEIN SCIENCE, 2018, 27 (01) : 112 - 128
  • [22] A cell-free system for production of 2,3-butanediol is robust to growth-toxic compounds
    Kay, Jennifer E.
    Jewett, Michael C.
    [J]. METABOLIC ENGINEERING COMMUNICATIONS, 2020, 10
  • [23] Engineering Embden-Meyerhof-Parnas Glycolysis to Generate Noncanonical Reducing Power
    King, Edward
    Cui, Youtian
    Aspacio, Derek
    Nicklen, Frances
    Zhang, Linyue
    Maxel, Sarah
    Luo, Ray
    Siegel, Justin B.
    Aitchison, Erick
    Li, Han
    [J]. ACS CATALYSIS, 2022, 12 (14) : 8582 - 8592
  • [24] Structural basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase from Thermoproteus tenax
    Lorentzen, E
    Hensel, R
    Knura, T
    Ahmed, H
    Pohl, E
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2004, 341 (03) : 815 - 828
  • [25] ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
    Maier, James A.
    Martinez, Carmenza
    Kasavajhala, Koushik
    Wickstrom, Lauren
    Hauser, Kevin E.
    Simmerling, Carlos
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (08) : 3696 - 3713
  • [26] Chemical mechanism and substrate binding sites of NADP-dependent aldehyde dehydrogenase from Streptococcus mutans
    Marchal, S
    Cobessi, D
    Rahuel-Clermont, S
    Tête-Favier, F
    Aubry, A
    Branlant, G
    [J]. CHEMICO-BIOLOGICAL INTERACTIONS, 2001, 130 (1-3) : 15 - 28
  • [27] Role of glutamate-268 in the catalytic mechanism of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans
    Marchal, S
    Rahuel-Clermont, S
    Branlant, G
    [J]. BIOCHEMISTRY, 2000, 39 (12) : 3327 - 3335
  • [28] Biochemical and genetic characterization of the three metabolic routes in Thermococcus kodakarensis linking glyceraldehyde 3-phosphate and 3-phosphoglycerate
    Matsubara, Kohei
    Yokooji, Yuusuke
    Atomi, Haruyuki
    Imanaka, Tadayuki
    [J]. MOLECULAR MICROBIOLOGY, 2011, 81 (05) : 1300 - 1312
  • [29] Rewriting yeast central carbon metabolism for industrial isoprenoid production
    Meadows, Adam L.
    Hawkins, Kristy M.
    Tsegaye, Yoseph
    Antipov, Eugene
    Kim, Youngnyun
    Raetz, Lauren
    Dahl, Robert H.
    Tai, Anna
    Mahatdejkul-Meadows, Tina
    Xu, Lan
    Zhao, Lishan
    Dasika, Madhukar S.
    Murarka, Abhishek
    Lenihan, Jacob
    Eng, Diana
    Leng, Joshua S.
    Liu, Chi-Li
    Wenger, Jared W.
    Jiang, Hanxiao
    Chao, Lily
    Westfall, Patrick
    Lai, Jefferson
    Ganesan, Savita
    Jackson, Peter
    Mans, Robert
    Platt, Darren
    Reeves, Christopher D.
    Saija, Poonam R.
    Wichmann, Gale
    Holmes, Victor F.
    Benjamin, Kirsten
    Hill, Paul W.
    Gardner, Timothy S.
    Tsong, Annie E.
    [J]. NATURE, 2016, 537 (7622) : 694 - +
  • [30] MMPBSA.py: An Efficient Program for End-State Free Energy Calculations
    Miller, Bill R., III
    McGee, T. Dwight, Jr.
    Swails, Jason M.
    Homeyer, Nadine
    Gohlke, Holger
    Roitberg, Adrian E.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3314 - 3321