Massively parallel CRISPR off-target detection enables rapid off-target prediction model building

被引:8
作者
Tian, Rui [1 ]
Cao, Chen [2 ]
He, Dan [3 ]
Dong, Dirong [4 ]
Sun, Lili [4 ]
Liu, Jiashuo
Chen, Ye
Wang, Yuyan
Huang, Zheying [5 ]
Li, Lifang [5 ]
Jin, Zhuang [5 ]
Huang, Zhaoyue [5 ]
Xie, Hongxian [1 ]
Zhao, Tingting [1 ]
Zhong, Chaoyue [1 ]
Hong, Yongfeng [1 ]
Hu, Zheng [4 ,6 ,7 ,8 ]
机构
[1] Generulor Co Ltd, Zhuhai 519000, Guangdong, Peoples R China
[2] Huazhong Univ Sci & Technol, Cent Hosp Wuhan, Tongji Med Coll, Academician Expert Workstat,Dept Obstet & Gynecol, Wuhan 430030, Hubei, Peoples R China
[3] Wuhan Univ, Zhongnan Hosp, Dept Neurol, Wuhan 430071, Hubei, Peoples R China
[4] Wuhan Univ, Women & Childrens Hosp, Zhongnan Hosp, Dept Gynecol Oncol, Wuhan 430071, Hubei, Peoples R China
[5] Sun Yat sen Univ, Affiliated Hosp 1, Dept Gynecol Oncol, Guangzhou 510080, Guangdong, Peoples R China
[6] Wuhan Univ, Zhongnan Hosp, Dept Radiat & Med Oncol, Wuhan 430071, Hubei, Peoples R China
[7] Wuhan Univ, Zhongnan Hosp, Hubei Key Lab Tumor Biol Behav, Wuhan 430071, Hubei, Peoples R China
[8] Wuhan Univ, Zhongnan Hosp, Hubei Canc Clin Study Ctr, Wuhan 430071, Hubei, Peoples R China
来源
MED | 2023年 / 4卷 / 07期
基金
中国国家自然科学基金;
关键词
CAS; SPECIFICITIES; DESIGN; CPF1; NUCLEASES; VIRUS; SEQ;
D O I
10.1016/j.medj.2023.05.005
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: CRISPR (clustered regularly interspaced short palindromic repeats) genome editing holds tremendous potential in clinical translation. However, the off-target effect has always been a major concern. Methods: Here, we have developed a novel sensitive and specific off target detection method, AID-seq (adaptor-mediated off-target identification by sequencing), that can comprehensively and faithfully detect the low-frequency off targets generated by different CRISPR nucleases (including Cas9 and Cas12a). Findings: Based on AID-seq, we developed a pooled strategy to simultaneously identify the on/off targets of multiple gRNAs, as well as using mixed human and human papillomavirus (HPV) genomes to screen the most efficient and safe targets from 416 HPV gRNA candidates for antiviral therapy. Moreover, we used the pooled strategy with 2,069 single-guide RNAs (sgRNAs) at a pool size of about 500 to profile the properties of our newly discovered CRISPR, FrCas9. Importantly, we successfully built an off-target detection model using these off-target data via the CRISPR-Net deep learning method (area under the receiver operating characteristic curve [AUROC] = 0.97, area under the precision recall curve [AUPRC] = 0.29). Conclusions: To our knowledge, AID-seq is the most sensitive and specific in vitro off-target detection method to date. And the pooled AIDseq strategy can be used as a rapid and high-throughput platform to select the best sgRNAs and characterize the properties of new CRISPRs.
引用
收藏
页码:478 / +
页数:22
相关论文
共 49 条
  • [1] The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases
    Altae-Tran, Han
    Kannan, Soumya
    Demircioglu, F. Esra
    Oshiro, Rachel
    Nety, Suchita P.
    McKay, Luke J.
    Dlakic, Mensur
    Inskeep, William P.
    Makarova, Kira S.
    Macrae, Rhiannon K.
    Koonin, Eugene, V
    Zhang, Feng
    [J]. SCIENCE, 2021, 374 (6563) : 57 - +
  • [2] Tools for experimental and computational analyses of off-target editing by programmable nucleases
    Bao, X. Robert
    Pan, Yidan
    Lee, Ciaran M.
    Davis, Timothy H.
    Bao, Gang
    [J]. NATURE PROTOCOLS, 2021, 16 (01) : 10 - 26
  • [3] Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens
    Behan, Fiona M.
    Iorio, Francesco
    Picco, Gabriele
    Goncalves, Emanuel
    Beaver, Charlotte M.
    Migliardi, Giorgia
    Santos, Rita
    Rao, Yanhua
    Sassi, Francesco
    Pinnelli, Marika
    Ansari, Rizwan
    Harper, Sarah
    Jackson, David Adam
    Mcrae, Rebecca
    Pooley, Rachel
    Wilkinson, Piers
    van der Meer, Dieudonne
    Dow, David
    Buser-Doepner, Carolyn
    Bertotti, Andrea
    Trusolino, Livio
    Stronach, Euan A.
    Saez-Rodriguez, Julio
    Yusa, Kosuke
    Garnett, Mathew J.
    [J]. NATURE, 2019, 568 (7753) : 511 - +
  • [4] MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing
    Boyle, Evan A.
    O'Roak, Brian J.
    Martin, Beth K.
    Kumar, Akash
    Shendure, Jay
    [J]. BIOINFORMATICS, 2014, 30 (18) : 2670 - 2672
  • [5] Cameron P, 2017, NAT METHODS, V14, P600, DOI [10.1038/NMETH.4284, 10.1038/nmeth.4284]
  • [6] CRISPRitz: rapid, high-throughput and variant-aware in silico off-target site identification for CRISPR genome editing
    Cancellieri, Samuele
    Canver, Matthew C.
    Bombieri, Nicola
    Giugno, Rosalba
    Pinello, Luca
    [J]. BIOINFORMATICS, 2020, 36 (07) : 2001 - 2008
  • [7] Human oncogenic viruses: nature and discovery
    Chang, Yuan
    Moore, Patrick S.
    Weiss, Robin A.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2017, 372 (1732)
  • [8] Evaluation of Homology-Independent CRISPR-Cas9 Off-Target Assessment Methods
    Chaudhari, Hemangi G.
    Penterman, Jon
    Whitton, Holly J.
    Spencer, Sarah J.
    Flanagan, Nicole
    Zhang, Maria C. Lei
    Huang, Elaine
    Khedkar, Aditya S.
    Toomey, J. Mike
    Shearer, Courtney A.
    Needham, Alexander W.
    Ho, Tony W.
    Kulman, John D.
    Cradick, T. J.
    Kernytsky, Andrew
    [J]. CRISPR JOURNAL, 2020, 3 (06): : 440 - 453
  • [9] fastp: an ultra-fast all-in-one FASTQ preprocessor
    Chen, Shifu
    Zhou, Yanqing
    Chen, Yaru
    Gu, Jia
    [J]. BIOINFORMATICS, 2018, 34 (17) : 884 - 890
  • [10] Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing
    Crosetto, Nicola
    Mitra, Abhishek
    Silva, Maria Joao
    Bienko, Magda
    Dojer, Norbert
    Wang, Qi
    Karaca, Elif
    Chiarle, Roberto
    Skrzypczak, Magdalena
    Ginalski, Krzysztof
    Pasero, Philippe
    Rowicka, Maga
    Dikic, Ivan
    [J]. NATURE METHODS, 2013, 10 (04) : 361 - +