Survey and systematization of 3D object detection models and methods

被引:10
作者
Drobnitzky, Moritz [1 ]
Friederich, Jonas [2 ]
Egger, Bernhard [3 ]
Zschech, Patrick [1 ,3 ]
机构
[1] Tech Univ Dresden, Munchner Pl 3, D-01187 Dresden, Germany
[2] Univ Southern Denmark, Maersk McKinney Moller Inst, Campusvej 55, DK-5230 Odense, Denmark
[3] Friedrich Alexander Univ Erlangen Nurnberg, Schlosspl 4, D-91054 Erlangen, Germany
关键词
3D object detection; 6-DoF; Tracking; Survey; POINT-CLOUD; R-CNN; 2D; SEGMENTATION; FEATURES;
D O I
10.1007/s00371-023-02891-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Strong demand for autonomous vehicles and the wide availability of 3D sensors are continuously fueling the proposal of novel methods for 3D object detection. In this paper, we provide a comprehensive survey of recent developments from 2012-2021 in 3D object detection covering the full pipeline from input data, over data representation and feature extraction to the actual detection modules. We introduce fundamental concepts, focus on a broad range of different approaches that have emerged over the past decade, and propose a systematization that provides a practical framework for comparing these approaches with the goal of guiding future development, evaluation, and application activities. Specifically, our survey and systematization of 3D object detection models and methods can help researchers and practitioners to get a quick overview of the field by decomposing 3DOD solutions into more manageable pieces.
引用
收藏
页码:1867 / 1913
页数:47
相关论文
共 170 条
[1]   Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild with Pose Annotations [J].
Ahmadyan, Adel ;
Zhang, Liangkai ;
Ablavatski, Artsiom ;
Wei, Jianing ;
Grundmann, Matthias .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :7818-7827
[2]   YOLO3D: End-to-End Real-Time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud [J].
Ali, Waleed ;
Abdelkarim, Sherif ;
Zidan, Mahmoud ;
Zahran, Mohamed ;
El Sallab, Ahmad .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT III, 2019, 11131 :716-728
[3]   A survey on adversarial attacks and defenses for object detection and their applications in autonomous vehicles [J].
Amirkhani, Abdollah ;
Karimi, Mohammad Parsa ;
Banitalebi-Dehkordi, Amin .
VISUAL COMPUTER, 2023, 39 (11) :5293-5307
[4]   A dynamically reconfigurable stereoscopic/panoramic vision mobile robot head controlled from a virtual environment [J].
Aprile, Walter A. ;
Ruffaldi, Emanuele ;
Sotgiu, Edoardo ;
Frisoli, Antonio ;
Bergamasco, Massimo .
VISUAL COMPUTER, 2008, 24 (11) :941-946
[5]   A Survey on 3D Object Detection Methods for Autonomous Driving Applications [J].
Arnold, Eduardo ;
Al-Jarrah, Omar Y. ;
Dianati, Mehrdad ;
Fallah, Saber ;
Oxtoby, David ;
Mouzakitis, Alex .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (10) :3782-3795
[6]   Monocular 3D Object Detection via Geometric Reasoning on Keypoints [J].
Barabanau, Ivan ;
Artemov, Alexey ;
Burnaev, Evgeny ;
Murashkin, Vyacheslav .
PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, :652-659
[7]   A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets [J].
Bayoudh, Khaled ;
Knani, Raja ;
Hamdaoui, Faycal ;
Mtibaa, Abdellatif .
VISUAL COMPUTER, 2022, 38 (08) :2939-2970
[8]   Review: Deep Learning on 3D Point Clouds [J].
Bello, Saifullahi Aminu ;
Yu, Shangshu ;
Wang, Cheng ;
Adam, Jibril Muhmmad ;
Li, Jonathan .
REMOTE SENSING, 2020, 12 (11)
[9]  
Beltrán J, 2018, IEEE INT C INTELL TR, P3517, DOI 10.1109/ITSC.2018.8569311
[10]  
Bishop Christopher M., 2006, Pattern recognition and machine learning, DOI [10.1007/978-0-387-45528-0, DOI 10.1007/978-0-387-45528-0]