A Collaborative Multimodal Learning-Based Framework for COVID-19 Diagnosis

被引:2
作者
Gao, Yuan [1 ]
Gong, Maoguo [1 ]
Ong, Yew-Soon [2 ,3 ]
Qin, A. K. [4 ]
Wu, Yue [1 ]
Xie, Fei [1 ]
机构
[1] Xidian Univ, Key Lab Collaborat Intelligence Syst, Minist Educ, Xian 710071, Shaanxi, Peoples R China
[2] ASTAR, Singapore 138632, Singapore
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[4] Swinburne Univ Technol, Dept Comp Technol, Hawthorn, Vic 3122, Australia
基金
中国国家自然科学基金;
关键词
COVID-19; Medical diagnostic imaging; Data models; Computed tomography; Task analysis; Artificial intelligence; Training; Coronavirus disease 2019 (COVID-19) diagnosis; multimodal data; multiparty learning; task-specific modeling;
D O I
10.1109/TNNLS.2023.3290188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The pandemic of coronavirus disease 2019 (COVID-19) has led to a global public health crisis, which caused millions of deaths and billions of infections, greatly increasing the pressure on medical resources. With the continuous emergence of viral mutations, developing automated tools for COVID-19 diagnosis is highly desired to assist the clinical diagnosis and reduce the tedious workload of image interpretation. However, medical images in a single site are usually of a limited amount or weakly labeled, while integrating data scattered around different institutions to build effective models is not allowed due to data policy restrictions. In this article, we propose a novel privacy-preserving cross-site framework for COVID-19 diagnosis with multimodal data, seeking to effectively leverage heterogeneous data from multiple parties while preserving patients' privacy. Specifically, a Siamese branched network is introduced as the backbone to capture inherent relationships across heterogeneous samples. The redesigned network is capable of handling semisupervised inputs in multimodalities and conducting task-specific training, in order to improve the model performance of various scenarios. The framework achieves significant improvement compared with state-of-the-art methods, as we demonstrate through extensive simulations on real-world datasets.
引用
收藏
页码:15883 / 15895
页数:13
相关论文
共 53 条
[1]  
[Anonymous], 2020, COVID 19 MED SEGM
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   Multimodal Machine Learning: A Survey and Taxonomy [J].
Baltrusaitis, Tadas ;
Ahuja, Chaitanya ;
Morency, Louis-Philippe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) :423-443
[4]  
Bonawitz K., 2019, Machine Learning and Systems
[5]   Practical Secure Aggregation for Privacy-Preserving Machine Learning [J].
Bonawitz, Keith ;
Ivanov, Vladimir ;
Kreuter, Ben ;
Marcedone, Antonio ;
McMahan, H. Brendan ;
Patel, Sarvar ;
Ramage, Daniel ;
Segal, Aaron ;
Seth, Karn .
CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, :1175-1191
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   Exploring Simple Siamese Representation Learning [J].
Chen, Xinlei ;
He, Kaiming .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15745-15753
[8]   BCS-Net: Boundary, Context, and Semantic for Automatic COVID-19 Lung Infection Segmentation From CT Images [J].
Cong, Runmin ;
Yang, Haowei ;
Jiang, Qiuping ;
Gao, Wei ;
Li, Haisheng ;
Wang, Cong ;
Zhao, Yao ;
Kwong, Sam .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
[9]   Federated learning for predicting clinical outcomes in patients with COVID-19 [J].
Dayan, Ittai ;
Roth, Holger R. ;
Zhong, Aoxiao ;
Harouni, Ahmed ;
Gentili, Amilcare ;
Abidin, Anas Z. ;
Liu, Andrew ;
Costa, Anthony Beardsworth ;
Wood, Bradford J. ;
Tsai, Chien-Sung ;
Wang, Chih-Hung ;
Hsu, Chun-Nan ;
Lee, C. K. ;
Ruan, Peiying ;
Xu, Daguang ;
Wu, Dufan ;
Huang, Eddie ;
Kitamura, Felipe Campos ;
Lacey, Griffin ;
de Antonio Corradi, Gustavo Cesar ;
Nino, Gustavo ;
Shin, Hao-Hsin ;
Obinata, Hirofumi ;
Ren, Hui ;
Crane, Jason C. ;
Tetreault, Jesse ;
Guan, Jiahui ;
Garrett, John W. ;
Kaggie, Joshua D. ;
Park, Jung Gil ;
Dreyer, Keith ;
Juluru, Krishna ;
Kersten, Kristopher ;
Rockenbach, Marcio Aloisio Bezerra Cavalcanti ;
Linguraru, Marius George ;
Haider, Masoom A. ;
AbdelMaseeh, Meena ;
Rieke, Nicola ;
Damasceno, Pablo F. ;
Silva, Pedro Mario Cruz E. ;
Wang, Pochuan ;
Xu, Sheng ;
Kawano, Shuichi ;
Sriswasdi, Sira ;
Park, Soo Young ;
Grist, Thomas M. ;
Buch, Varun ;
Jantarabenjakul, Watsamon ;
Wang, Weichung ;
Tak, Won Young .
NATURE MEDICINE, 2021, 27 (10) :1735-+
[10]   Multimodal Fusion for Objective Assessment of Cognitive Workload: A Review [J].
Debie, Essam ;
Fernandez Rojas, Raul ;
Fidock, Justin ;
Barlow, Michael ;
Kasmarik, Kathryn ;
Anavatti, Sreenatha ;
Garratt, Matt ;
Abbass, Hussein A. .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (03) :1542-1555