Machine learning to improve interpretability of clinical, radiological and panel-based genomic data of glioma grade 4 patients undergoing surgical resection

被引:5
作者
Dal Bo, Michele [1 ]
Polano, Maurizio [1 ]
Ius, Tamara [2 ]
Di Cintio, Federica [1 ]
Mondello, Alessia [1 ]
Manini, Ivana [3 ,4 ]
Pegolo, Enrico [3 ,4 ]
Cesselli, Daniela [3 ,4 ]
Di Loreto, Carla [3 ,4 ]
Skrap, Miran [2 ]
Toffoli, Giuseppe [1 ]
机构
[1] IRCCS, Expt & Clin Pharmacol Unit, Ctr Riferimento Oncol Aviano CRO, I-33081 Aviano, Italy
[2] Univ Hosp Udine, Head Neck & Neurosci Dept, Neurosurg Unit, I-33100 Udine, Italy
[3] Univ Hosp Udine, Inst Pathol, I-33100 Udine, Italy
[4] Univ Udine, Dept Med, I-33100 Udine, Italy
关键词
Glioma; Machine learning; Prognosis; Carmustine wafer; Tumor mutational burden; CENTRAL-NERVOUS-SYSTEM; ADJUVANT TEMOZOLOMIDE; GLIOBLASTOMA; CANCER; MUTATIONS; SURVIVAL; CLASSIFICATION; CHEMOTHERAPY; RADIOTHERAPY; CONCOMITANT;
D O I
10.1186/s12967-023-04308-y
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
BackgroundGlioma grade 4 (GG4) tumors, including astrocytoma IDH-mutant grade 4 and the astrocytoma IDH wt are the most common and aggressive primary tumors of the central nervous system. Surgery followed by Stupp protocol still remains the first-line treatment in GG4 tumors. Although Stupp combination can prolong survival, prognosis of treated adult patients with GG4 still remains unfavorable. The introduction of innovative multi-parametric prognostic models may allow refinement of prognosis of these patients. Here, Machine Learning (ML) was applied to investigate the contribution in predicting overall survival (OS) of different available data (e.g. clinical data, radiological data, or panel-based sequencing data such as presence of somatic mutations and amplification) in a mono-institutional GG4 cohort.MethodsBy next-generation sequencing, using a panel of 523 genes, we performed analysis of copy number variations and of types and distribution of nonsynonymous mutations in 102 cases including 39 carmustine wafer (CW) treated cases. We also calculated tumor mutational burden (TMB). ML was applied using eXtreme Gradient Boosting for survival (XGBoost-Surv) to integrate clinical and radiological information with genomic data.ResultsBy ML modeling (concordance (c)- index = 0.682 for the best model), the role of predicting OS of radiological parameters including extent of resection, preoperative volume and residual volume was confirmed. An association between CW application and longer OS was also showed. Regarding gene mutations, a role in predicting OS was defined for mutations of BRAF and of other genes involved in the PI3K-AKT-mTOR signaling pathway. Moreover, an association between high TMB and shorter OS was suggested. Consistently, when a cutoff of 1.7 mutations/megabase was applied, cases with higher TMB showed significantly shorter OS than cases with lower TMB.ConclusionsThe contribution of tumor volumetric data, somatic gene mutations and TBM in predicting OS of GG4 patients was defined by ML modeling.
引用
收藏
页数:13
相关论文
共 57 条
[1]  
Bergstra J., 2013, Proc. Mach. Learn. Res., V28
[2]   BRAF Signaling Inhibition in Glioblastoma: Which Clinical Perspectives? [J].
Bouche, Victoria ;
Aldegheri, Giovanni ;
Donofrio, Carmine Antonio ;
Fioravanti, Antonio ;
Roberts-Thomson, Samuel ;
Fox, Stephen B. ;
Schettini, Francesco ;
Generali, Daniele .
FRONTIERS IN ONCOLOGY, 2021, 11
[3]   PLACEBO-CONTROLLED TRIAL OF SAFETY AND EFFICACY OF INTRAOPERATIVE CONTROLLED DELIVERY BY BIODEGRADABLE POLYMERS OF CHEMOTHERAPY FOR RECURRENT GLIOMAS [J].
BREM, H ;
PIANTADOSI, S ;
BURGER, PC ;
WALKER, M ;
SELKER, R ;
VICK, NA ;
BLACK, K ;
SISTI, M ;
BREM, S ;
MOHR, G ;
MULLER, P ;
MORAWETZ, R ;
SCHOLD, SC .
LANCET, 1995, 345 (8956) :1008-1012
[4]   The Somatic Genomic Landscape of Glioblastoma [J].
Brennan, Cameron W. ;
Verhaak, Roel G. W. ;
McKenna, Aaron ;
Campos, Benito ;
Noushmehr, Houtan ;
Salama, Sofie R. ;
Zheng, Siyuan ;
Chakravarty, Debyani ;
Sanborn, J. Zachary ;
Berman, Samuel H. ;
Beroukhim, Rameen ;
Bernard, Brady ;
Wu, Chang-Jiun ;
Genovese, Giannicola ;
Shmulevich, Ilya ;
Barnholtz-Sloan, Jill ;
Zou, Lihua ;
Vegesna, Rahulsimham ;
Shukla, Sachet A. ;
Ciriello, Giovanni ;
Yung, W. K. ;
Zhang, Wei ;
Sougnez, Carrie ;
Mikkelsen, Tom ;
Aldape, Kenneth ;
Bigner, Darell D. ;
Van Meir, Erwin G. ;
Prados, Michael ;
Sloan, Andrew ;
Black, Keith L. ;
Eschbacher, Jennifer ;
Finocchiaro, Gaetano ;
Friedman, William ;
Andrews, David W. ;
Guha, Abhijit ;
Iacocca, Mary ;
O'Neill, Brian P. ;
Foltz, Greg ;
Myers, Jerome ;
Weisenberger, Daniel J. ;
Penny, Robert ;
Kucherlapati, Raju ;
Perou, Charles M. ;
Hayes, D. Neil ;
Gibbs, Richard ;
Marra, Marco ;
Mills, Gordon B. ;
Lander, Eric ;
Spellman, Paul ;
Wilson, Richard .
CELL, 2013, 155 (02) :462-477
[5]   Association of the Extent of Resection With Survival in Glioblastoma A Systematic Review and Meta-analysis [J].
Brown, Timothy J. ;
Brennan, Matthew C. ;
Li, Michael ;
Church, Ephraim W. ;
Brandmeir, Nicholas J. ;
Rakszawski, Kevin L. ;
Patel, Akshal S. ;
Rizk, Elias B. ;
Suki, Dima ;
Sawaya, Raymond ;
Glantz, Michael .
JAMA ONCOLOGY, 2016, 2 (11) :1460-1469
[6]   Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden [J].
Chalmers, Zachary R. ;
Connelly, Caitlin F. ;
Fabrizio, David ;
Gay, Laurie ;
Ali, Siraj M. ;
Ennis, Riley ;
Schrock, Alexa ;
Campbell, Brittany ;
Shlien, Adam ;
Chmielecki, Juliann ;
Huang, Franklin ;
He, Yuting ;
Sun, James ;
Tabori, Uri ;
Kennedy, Mark ;
Lieber, Daniel S. ;
Roels, Steven ;
White, Jared ;
Otto, Geoffrey A. ;
Ross, Jeffrey S. ;
Garraway, Levi ;
Miller, Vincent A. ;
Stephens, Phillip J. ;
Frampton, Garrett M. .
GENOME MEDICINE, 2017, 9
[7]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[8]   Machine Learning-Based Prediction of Early Recurrence in Glioblastoma Patients: A Glance Towards Precision Medicine [J].
Della Pepa, Giuseppe Maria ;
Caccavella, Valerio Maria ;
Menna, Grazia ;
Ius, Tamara ;
Auricchio, Anna Maria ;
Sabatino, Giovanni ;
La Rocca, Giuseppe ;
Chiesa, Silvia ;
Gaudino, Simona ;
Marchese, Enrico ;
Olivi, Alessandro .
NEUROSURGERY, 2021, 89 (05) :873-883
[9]   The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices [J].
Di Cintio, Federica ;
Dal Bo, Michele ;
Baboci, Lorena ;
De Mattia, Elena ;
Polano, Maurizio ;
Toffoli, Giuseppe .
FRONTIERS IN NEUROSCIENCE, 2020, 14
[10]   PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance [J].
Edlind, Merritt P. ;
Hsieh, Andrew C. .
ASIAN JOURNAL OF ANDROLOGY, 2014, 16 (03) :378-386