Predicting cancer incidence in regions without population-based cancer registries using mortality

被引:1
作者
Retegui, Garazi [1 ,2 ]
Etxeberria, Jaione [1 ,2 ]
Riebler, Andrea [3 ]
Ugarte, Maria Dolores [1 ,2 ]
机构
[1] Publ Univ Navarre UPNA, Dept Stat Comp Sci & Math, Arrosadia Campus, Pamplona 31006, Spain
[2] Publ Univ Navarre UPNA, Inst Adv Mat & Math INAMAT2, Arrosadia Campus, Pamplona, Spain
[3] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, Trondheim, Norway
关键词
Bayesian inference; cancer incidence; disease mapping; multivariate spatial models; predictions; SPATIOTEMPORAL ANALYSIS; MODELS; SPAIN;
D O I
10.1093/jrsssa/qnad077
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Cancer incidence numbers are routinely recorded by national or regional population-based cancer registries (PBCRs). However, in most southern European countries, the local PBCRs cover only a fraction of the country. Therefore, national cancer incidence can be only obtained through estimation methods. In this paper, we predict incidence rates in areas without cancer registry using multivariate spatial models modelling jointly cancer incidence and mortality. To evaluate the proposal, we use cancer incidence and mortality data from all the German states. We also conduct a simulation study by mimicking the real case of Spain considering different scenarios depending on the similarity of spatial patterns between incidence and mortality, the levels of lethality, and varying the amount of incidence data available. The new proposal provides good interval estimates in regions without PBCRs and reduces the relative error in estimating national incidence compared to one of the most widely used methodologies.
引用
收藏
页码:874 / 889
页数:16
相关论文
共 33 条
[1]   Bayesian shared spatial-component models to combine and borrow strength across sparse disease surveillance sources [J].
Ancelet, Sophie ;
Abellan, Juan J. ;
Vilas, Victor J. Del Rio ;
Birch, Colin ;
Richardson, Sylvia .
BIOMETRICAL JOURNAL, 2012, 54 (03) :385-404
[2]  
[Anonymous], 2009, Implementing Approximate Bayesian Inference Using Integrated Nested Laplace Approximation: A Manual for the Inla Program
[3]   An assessment of GLOBOCAN methods for deriving national estimates of cancer incidence [J].
Antoni, Sebastien ;
Soerjomataram, Isabelle ;
Moller, Bjorn ;
Bray, Freddie ;
Ferlay, Jacques .
BULLETIN OF THE WORLD HEALTH ORGANIZATION, 2016, 94 (03) :174-184
[4]   A unifying modeling framework for highly multivariate disease mapping [J].
Botella-Rocamora, P. ;
Martinez-Beneito, M. A. ;
Banerjee, S. .
STATISTICS IN MEDICINE, 2015, 34 (09) :1548-1559
[5]   Cancer incidence and mortality in China, 2007 [J].
Chen, Wan-qing ;
Zeng, Hong-mei ;
Zheng, Rong-shou ;
Zhang, Si-wei ;
He, Jie .
CHINESE JOURNAL OF CANCER RESEARCH, 2012, 24 (01) :1-8
[6]   Bayesian approach to predicting cancer incidence for an area without cancer registration by using cancer incidence data from nearby areas [J].
Cleries, Ramon ;
Ribes, Josepa ;
Buxo, Maria ;
Ameijide, Alberto ;
Marcos-Gragera, Rafael ;
Galceran, Jaume ;
Miguel Martinez, Jose ;
Yasui, Yutaka .
STATISTICS IN MEDICINE, 2012, 31 (10) :978-987
[7]   On the convenience of heteroscedasticity in highly multivariate disease mapping [J].
Corpas-Burgos, F. ;
Botella-Rocamora, P. ;
Martinez-Beneito, M. A. .
TEST, 2019, 28 (04) :1229-1250
[8]  
Dawid AP, 1999, ANN STAT, V27, P65
[9]   Cancer incidence in Spain, 2015 [J].
Galceran, J. ;
Ameijide, A. ;
Carulla, M. ;
Mateos, A. ;
Quiros, J. R. ;
Rojas, D. ;
Aleman, A. ;
Torrella, A. ;
Chico, M. ;
Vicente, M. ;
Diaz, J. M. ;
Larranaga, N. ;
Marcos-Gragera, R. ;
Sanchez, M. J. ;
Perucha, J. ;
Franch, P. ;
Navarro, C. ;
Ardanaz, E. ;
Bigorra, J. ;
Rodrigo, R. ;
Peris Bonet, R. .
CLINICAL & TRANSLATIONAL ONCOLOGY, 2017, 19 (07) :799-825
[10]   Strictly proper scoring rules, prediction, and estimation [J].
Gneiting, Tilmann ;
Raftery, Adrian E. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) :359-378