Prediction of Chongqing's grain output based on support vector machine

被引:6
作者
Wang, Jia [1 ]
Tian, Guixian [2 ]
Tao, Yongchao [3 ]
Lu, Chengwu [1 ]
机构
[1] Zhejiang Wanli Univ, Sch Business, Ningbo, Peoples R China
[2] Pingxiang Univ, Sch Business, Pingxiang, Peoples R China
[3] Shandong Acad Social Sci, Shandong Marine Econ & Cultural Res Inst, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
support vector machine; food production; to predict; neural network; weights of the particle; YIELD;
D O I
10.3389/fsufs.2023.1015016
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Scientific prediction of agricultural food production plays an essential role in stabilizing food supply. In order to improve the accuracy of grain yield prediction and reduce the error of grain yield prediction in Chongqing, this paper proposes a new method for the grain yield prediction in Chongqing by using support vector machine (SVM). In this paper, based on the support vector regression structure, the support vector regression algorithm is designed, and then the support vector machine is adopted in the replacement of the error back propagation process in BP neural network. The results of case analysis show that the method based on support vector machine can effectively reduce the error of grain yield prediction.
引用
收藏
页数:9
相关论文
共 16 条
[1]   Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review [J].
Ahmed, Mutez Ali ;
Passioura, John ;
Carminati, Andrea .
JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (13) :3255-3265
[2]   Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality [J].
Bibb, Jenny L. ;
Cook, Donald ;
Catchot, Angus ;
Musser, Fred ;
Stewart, Scott D. ;
Leonard, Billy Rogers ;
Buntin, G. David ;
Kerns, David ;
Allen, Tom W. ;
Gore, Jeffrey .
JOURNAL OF ECONOMIC ENTOMOLOGY, 2018, 111 (03) :1249-1255
[3]  
Bingjun L., 2019, AM J ROENTGENOL, V47, P325, DOI [10.15889/j.issn.1002-1302.2019.18.068, DOI 10.15889/J.ISSN.1002-1302.2019.18.068]
[4]  
Chao F., 2018, JIANGSU AGR SCI, V46, P212, DOI [10.15889/j.issn.1002-1302.2018.05.056, DOI 10.15889/J.ISSN.1002-1302.2018.05.056]
[5]   Efficient predictability of stock return volatility: The role of stock market implied volatility [J].
Dai, Zhifeng ;
Zhou, Huiting ;
Wen, Fenghua ;
He, Shaoyi .
NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2020, 52
[6]   Reducing vulnerability of rainfed agriculture through seasonal climate predictions: A case study on the rainfed rice production in Southeast Asia [J].
Hayashi, Keiichi ;
Llorca, Lizzida ;
Rustini, Sri ;
Setyanto, Prihasto ;
Zaini, Zulkifli .
AGRICULTURAL SYSTEMS, 2018, 162 :66-76
[7]  
Megersa Tadesse Megersa Tadesse, 2018, Journal of Agricultural Science (Toronto), V10, P195, DOI [10.5539/jas.v10n2p195, 10.5539/jas.v10n2p195]
[8]   Genetic studies for seed size and grain yield traits in kabuli chickpea [J].
Sundaram, Prity ;
Samineni, Srinivasan ;
Sajja, Sobhan B. ;
Singh, S. P. ;
Sharma, R. N. ;
Gaur, Pooran M. .
EUPHYTICA, 2018, 214 (04)
[9]   Expression of a rice soluble starch synthase gene in transgenic wheat improves the grain yield under heat stress conditions [J].
Tian, Bin ;
Talukder, Shyamal K. ;
Fu, Jianming ;
Fritz, Allan K. ;
Trick, Harold N. .
IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2018, 54 (03) :216-227
[10]   Grain yield and quality responses of wheat expressing a barley sucrose transporter to combined climate change factors [J].
Weichert, Heiko ;
Hoegy, Petra ;
Mora-Ramirez, Isabel ;
Fuchs, Joerg ;
Eggert, Kai ;
Koehler, Peter ;
Weschke, Winfriede ;
Fangmeier, Andreas ;
Weber, Hans .
JOURNAL OF EXPERIMENTAL BOTANY, 2017, 68 (20) :5511-5525