Infinitely many solutions for Schrödinger equations with Hardy potential and Berestycki-Lions conditions

被引:0
作者
Zhou, Shan [1 ]
机构
[1] Anyang Univ Korea, Global Grad Sch, Anyang 430714, Gyeonggi Do, South Korea
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
关键词
Berestycki-Lions conditions; Hardy potential; infinitely many solutions; variation method; symmetric mountain pass; SCALAR FIELD-EQUATIONS; EXISTENCE;
D O I
10.1515/math-2023-0175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the following Schr & ouml;dinger equation: -Delta u- mu/xug (u) Delta in,N-2(R-N) where >= N-3,mu divided by x2 divided by is called the Hardy potential and g satisfies Berestycki-Lions conditions. If<<-mu(N-2)(2)/4, we will take symmetric mountain pass approaches to prove the existence of infinitely many solutions of this problem.
引用
收藏
页数:9
相关论文
共 26 条
  • [1] Azzollini A., On the Schrodinger equation inNunder the effect of a general nonlinear term
  • [2] SINGULAR QUASILINEAR CRITICAL SCHRODINGER EQUATIONS IN RN
    Baldelli, Laura
    Filippucci, Roberta
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (08) : 2561 - 2586
  • [3] Baldelli L, 2022, J GEOM ANAL, V32, DOI 10.1007/s12220-021-00846-3
  • [4] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [5] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
  • [6] Infinitely many bound states for some nonlinear scalar field equations
    Cerami, G
    Devillanova, G
    Solimini, S
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (02) : 139 - 168
  • [7] Multiplicity of positive and nodal solutions for scalar field equations
    Cerami, Giovanna
    Molle, Riccardo
    Passaseo, Donato
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (10) : 3554 - 3606
  • [8] Infinitely Many Positive Solutions to Some Scalar Field Equations with Nonsymmetric Coefficients
    Cerami, Giovanna
    Passaseo, Donato
    Solimini, Sergio
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (03) : 372 - 413
  • [9] On the Hardy-Sobolev equation
    Dancer, E. N.
    Gladiali, F.
    Grossi, M.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (02) : 299 - 336
  • [10] Solutions of Schrodinger equations with inverse square potential and critical nonlinearity
    Deng, Yinbin
    Jin, Lingyu
    Peng, Shuangjie
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (05) : 1376 - 1398