Fe-Nx sites coupled with core-shell FeS@C nanoparticles to boost the oxygen catalysis for rechargeable Zn-air batteries

被引:10
|
作者
Srinivas, Katam [1 ,2 ]
Chen, Zhuo [3 ]
Chen, Anran [4 ]
Ma, Fei [1 ,2 ]
Zhu, Ming-qiang [3 ]
Chen, Yuanfu [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Integrated Circuit Sci & Engn, Chengdu 610054, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Device, Chengdu 610054, Sichuan, Peoples R China
[3] Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Shaanxi, Peoples R China
[4] Yunnan Univ, Sch Mat & Energy, Kunming 650091, Yunnan, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Fe-N-x sites; Core-shell FeS@C; Synergistic interactions; Oxygen reduction reaction; Zn-air battery; REDUCTION REACTION; ORGANIC FRAMEWORK; POROUS CARBON; ACTIVE-SITES; ELECTROCATALYST; PERFORMANCE; NITROGEN; HETEROJUNCTIONS; NANOSHEET; GRAPHENE;
D O I
10.1016/j.jechem.2023.11.042
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The development of efficient single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) remains a formidable challenge, primarily due to the symmetric charge distribution of metal single-atom sites (M-N-4). To address such issue, herein, Fe-N-x sites coupled synergistic catalysts fabrication strategy is presented to break the uniform electronic distribution, thus enhancing the intrinsic catalytic activity. Precisely, atomically dispersed Fe-N-x sites supported on N/S-doped mesoporous carbon (NSC) coupled with FeS@C core-shell nanoparticles (FAS-NSC@950) is synthesized by a facile hydrothermal reaction and subsequent pyrolysis. Due to the presence of an in situ-grown conductive graphitic layer (shell), the FeS nanoparticles (core) effectively adjust the electronic structure of single-atom Fe sites and facilitate the ORR kinetics via short/long-range coupling interactions. Consequently, FAS-NSC@950 displays a more positive half-wave potential (E-1/2) of 0.871 V with a significantly boosted ORR kinetics (Tafel slope = 52.2 mV dec(-1)), outpacing the commercial Pt/C (E-1/2 = 0.84 V and Tafel slope = 54.6 mV dec(-1)). As a bifunctional electrocatalyst, it displays a smaller bifunctional activity parameter (Delta E) of 0.673 V, surpassing the Pt/C-RuO2 combination (Delta E = 0.724 V). Besides, the FAS-NSC@950-based zincair battery (ZAB) displays superior power density, specific capacity, and long-term cycling performance to the Pt/C-Ir/C-based ZAB. This work significantly contributes to the field by offering a promising strategy to enhance the catalytic activity of SACs for ORR, with potential implications for energy conversion and storage technologies. (c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:565 / 577
页数:13
相关论文
共 50 条
  • [11] Solvent environment engineering to synthesize Fe-N-C nanocubes with densely Fe-Nx sites as oxygen reduction catalysts for Zn-air battery
    Xu, Hao
    Xiao, Lihui
    Yang, Peixia
    Lu, Xiangyu
    Liu, Lilai
    Wang, Dan
    Zhang, Jinqiu
    An, Maozhong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 638 : 242 - 251
  • [12] Efficient and Durable Bifunctional Oxygen Catalysts Based on NiFeO@MnOx Core-Shell Structures for Rechargeable Zn-Air Batteries
    Cheng, Yi
    Dou, Shuo
    Veder, Jean-Pierre
    Wang, Shuangyin
    Saunders, Martin
    Jiang, San Ping
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (09) : 8121 - 8133
  • [13] Carbon Nanosheets Containing Discrete Co-Nx-By-C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries
    Guo, Yingying
    Yuan, Pengfei
    Zhang, Jianan
    Hu, Yongfeng
    Amiinu, Ibrahim Saana
    Wang, Xin
    Zhou, Jigang
    Xia, Huicong
    Song, Zhibo
    Xu, Qun
    Mu, Shichun
    ACS NANO, 2018, 12 (02) : 1894 - 1901
  • [14] Core-shell structured nanoporous N-doped carbon decorated with embedded Co nanoparticles as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
    Chen, Xiaowen
    Gao, Jingxia
    Wang, Luyuan
    Zhu, Ping
    Zhao, Xinsheng
    Wang, Guoxiang
    Liu, Sa
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (05) : 2760 - 2764
  • [15] Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn-air batteries
    Ding, Kuixing
    Hu, Jiugang
    Luo, Jia
    Jin, Wei
    Zhao, Liming
    Zheng, Lirong
    Yan, Wensheng
    Weng, Baicheng
    Hou, Hongshuai
    Ji, Xiaobo
    NANO ENERGY, 2022, 91
  • [16] Tunable Fe/N co-doped 3D porous graphene with high density Fe-Nx sites as the efficient bifunctional oxygen electrocatalyst for Zn-air batteries
    Liu, Yuepeng
    Li, Zhongfang
    Wang, Likai
    Zhang, Lei
    Niu, Xueliang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (74) : 36811 - 36823
  • [17] Oxygen- bridging Fe, Co dual- metal dimers boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries
    Zhou, Qixing
    Xue, Wendan
    Cui, Xun
    Wang, Pengfei
    Zuo, Sijin
    Mo, Fan
    Li, Chengzhi
    Liu, Gaolei
    Ouyang, Shaohu
    Zhan, Sihui
    Chen, Juan
    Wang, Chao
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (30)
  • [18] Ultrafine Fe/Fe3C decorated on Fe-Nx-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries
    Zong, Lingbo
    Chen, Xin
    Liu, Siliang
    Fan, Kaicai
    Dou, Shuming
    Xu, Jie
    Zhao, Xiaoxian
    Zhang, Wenjun
    Zhang, Yaowen
    Wu, Weicui
    Lu, Fenghong
    Cui, Lixiu
    Jia, Xiaofei
    Zhang, Qi
    Yang, Yu
    Zhao, Jian
    Li, Xia
    Deng, Yida
    Chen, Yanan
    Wang, Lei
    JOURNAL OF ENERGY CHEMISTRY, 2021, 56 (56): : 72 - 79
  • [19] Ultrafine Fe/Fe3C decorated on Fe-Nx-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries
    Lingbo Zong
    Xin Chen
    Siliang Liu
    Kaicai Fan
    Shuming Dou
    Jie Xu
    Xiaoxian Zhao
    Wenjun Zhang
    Yaowen Zhang
    Weicui Wu
    Fenghong Lu
    Lixiu Cui
    Xiaofei Jia
    Qi Zhang
    Yu Yang
    Jian Zhao
    Xia Li
    Yida Deng
    Yanan Chen
    Lei Wang
    Journal of Energy Chemistry, 2021, 56 (05) : 72 - 79
  • [20] Modulation of Single Atomic Co and Fe Sites on Hollow Carbon Nanospheres as Oxygen Electrodes for Rechargeable Zn-Air Batteries
    Jose, Vishal
    Hu, Huimin
    Edison, Eldho
    Manalastas, William, Jr.
    Ren, Hao
    Kidkhunthod, Pinit
    Sreejith, Sivaramapanicker
    Jayakumar, Anjali
    Nsanzimana, Jean Marie Vianney
    Srinivasan, Madhavi
    Choi, Jinho
    Lee, Jong-Min
    SMALL METHODS, 2021, 5 (02)