PEMEM Percentile: New Plasma Environment Specification Model for Surface Charging Risk Assessment

被引:0
作者
Dubyagin, S. [1 ]
Ganushkina, N. [1 ,2 ]
Sicard, A. [3 ]
Mateo-Velez, J. -c. [3 ]
Monnin, L. [3 ]
Heynderickx, D. [4 ]
Jiggens, P. [5 ]
Deprez, G. [5 ]
Cipriani, F. [5 ]
机构
[1] Finnish Meteorol Inst, Helsinki, Finland
[2] Univ Michigan, Climate & Space Sci & Engn Dept, Ann Arbor, MI USA
[3] ONERA French Aerosp Lab, Toulouse, France
[4] DH Consultancy BV, Leuven, Belgium
[5] ESA, ESTEC, Noordwijk, Netherlands
基金
芬兰科学院; 美国国家科学基金会;
关键词
specification model; surface charging; electron flux; plasma environment; GEOSTATIONARY ELECTRON ENVIRONMENT; FLUXES; ORBIT; POTENTIALS; GREEN;
D O I
10.1029/2023JA032026
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Plasma Environment Modeling in the Earth's Magnetosphere (PEMEM) is a European Space Agency activity supporting the development of a new specification model for the spacecraft surface charging risk assessment. This paper presents a description of the basic model version: the PEMEM percentile model. The model is intended to be used for space missions with near-equatorial orbits. The model is based on the Van Allen Probes particle measurements inside the geostationary orbit. The model's primary input is a planned spacecraft trajectory. It outputs statistical characteristics of the plasma environment which are expected to be encountered during a mission lifetime. These characteristics include differential electron and proton flux percentiles for a set of energies (percentile spectra), and percentiles of the integrated electron flux. The model covers the energy range of 1-100 keV for electrons and 40 eV-51 keV for protons. Since extreme spacecraft charging usually occurs in the eclipse, the same characteristics can be separately output for the periods when the spacecraft is shadowed by the Earth. The new specification model of cis-GEO near-equatorial plasma environment aimed at the surface charging risk assessment is presented The model covers the energy ranges 1-100 keV for electrons and 50 eV-50 keV for protons For a given orbital scenario, the model outputs flux percentiles that are expected to be encountered during the mission lifetime
引用
收藏
页数:17
相关论文
共 48 条
  • [1] The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft
    Blake, J. B.
    Carranza, P. A.
    Claudepierre, S. G.
    Clemmons, J. H.
    Crain, W. R., Jr.
    Dotan, Y.
    Fennell, J. F.
    Fuentes, F. H.
    Galvan, R. M.
    George, J. S.
    Henderson, M. G.
    Lalic, M.
    Lin, A. Y.
    Looper, M. D.
    Mabry, D. J.
    Mazur, J. E.
    McCarthy, B.
    Nguyen, C. Q.
    O'Brien, T. P.
    Perez, M. A.
    Redding, M. T.
    Roeder, J. L.
    Salvaggio, D. J.
    Sorensen, G. A.
    Spence, H. E.
    Yi, S.
    Zakrzewski, M. P.
    [J]. SPACE SCIENCE REVIEWS, 2013, 179 (1-4) : 383 - 421
  • [2] A unified approach to inner magnetospheric state prediction
    Bortnik, J.
    Li, W.
    Thorne, R. M.
    Angelopoulos, V.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (03) : 2423 - 2430
  • [3] Model for the geostationary electron environment: POLE
    Boscher, DM
    Bourdarie, SA
    Friedel, RHW
    Belian, RD
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (06) : 2278 - 2283
  • [4] RBSP-ECT Combined Pitch Angle Resolved Electron Flux Data Product
    Boyd, A. J.
    Spence, H. E.
    Reeves, G. D.
    Funsten, H. O.
    Skoug, R. M.
    Larsen, B. A.
    Blake, J. B.
    Fennell, J. F.
    Claudepierre, S. G.
    Baker, D. N.
    Kanekal, S. G.
    Jaynes, A. N.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (03)
  • [5] RBSP-ECT Combined Spin-Averaged Electron Flux Data Product
    Boyd, A. J.
    Reeves, D.
    Spence, H. E.
    Funsten, H. O.
    Larsen, B. A.
    Skoug, R. M.
    Blake, J. B.
    Fennell, J. F.
    Claudepierre, S. G.
    Baker, D. N.
    Kanekal, S. G.
    Jayne, A. N.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (11) : 9124 - 9136
  • [6] The System Science Development of Local Time-Dependent 40-keV Electron Flux Models for Geostationary Orbit
    Boynton, R. J.
    Amariutei, O. A.
    Shprits, Y. Y.
    Balikhin, M. A.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2019, 17 (06): : 894 - 906
  • [7] Electron flux models for different energies at geostationary orbit
    Boynton, R. J.
    Balikhin, M. A.
    Sibeck, D. G.
    Walker, S. N.
    Billings, S. A.
    Ganushkina, N.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2016, 14 (10): : 846 - 860
  • [8] A neural network model of three-dimensional dynamic electron density in the inner magnetosphere
    Chu, X.
    Bortnik, J.
    Li, W.
    Ma, Q.
    Denton, R.
    Yue, C.
    Angelopoulos, V.
    Thorne, R. M.
    Darrouzet, F.
    Ozhogin, P.
    Kletzing, C. A.
    Wang, Y.
    Menietti, J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (09) : 9183 - 9197
  • [9] A Revised Look at Relativistic Electrons in the Earth's Inner Radiation Zone and Slot Region
    Claudepierre, S. G.
    O'Brien, T. P.
    Looper, M. D.
    Blake, J. B.
    Fennell, J. F.
    Roeder, J. L.
    Clemmons, J. H.
    Mazur, J. E.
    Turner, D. L.
    Reeves, D.
    Spence, H. E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (02) : 934 - 951
  • [10] Representation of the measured geosynchronous plasma environment in spacecraft charging calculations
    Davis, V. A.
    Mandell, M. J.
    Thomsen, M. F.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A10)