On the accuracy of the finite volume approximations to nonlocal conservation laws

被引:5
作者
Aggarwal, Aekta [1 ]
Holden, Helge [2 ]
Vaidya, Ganesh [2 ]
机构
[1] Indian Inst Management Indore, Operat Management & Quantitat Tech Area, Rau Pithampur Rd, Indore 453556, Madhya Pradesh, India
[2] NTNU Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
TRAFFIC FLOW; CROWD DYNAMICS; UNIQUENESS; EQUATIONS; SCHEME; MODELS; WAVES;
D O I
10.1007/s00211-023-01388-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we discuss the error analysis for a certain class of monotone finite volume schemes approximating nonlocal scalar conservation laws, modeling traffic flow and crowd dynamics, without any additional assumptions on monotonicity or linearity of the kernel mu or the flux f. We first prove a novel Kuznetsov-type lemma for this class of PDEs and thereby show that the finite volume approximations converge to the entropy solution at the rate of root Delta t in L-1(R). To the best of our knowledge, this is the first proof of any type of convergence rate for this class of conservation laws. We also present numerical experiments to illustrate this result.
引用
收藏
页码:237 / 271
页数:35
相关论文
共 33 条
[1]  
Aggarwal A., 2023, PREPRINT
[2]   Crowd dynamics through non-local conservation laws [J].
Aggarwal, Aekta ;
Goatin, Paola .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (01) :37-50
[3]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[4]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[5]   ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS [J].
Amorim, Paulo ;
Colombo, Rinaldo M. ;
Teixeira, Andreia .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :19-37
[6]  
[Anonymous], [No title captured], DOI DOI 10.1016/0041-5553(76)90046-X
[7]   On nonlocal conservation laws modelling sedimentation [J].
Betancourt, F. ;
Buerger, R. ;
Karlsen, K. H. ;
Tory, E. M. .
NONLINEARITY, 2011, 24 (03) :855-885
[8]   Well-posedness of a conservation law with non-local flux arising in traffic flow modeling [J].
Blandin, Sebastien ;
Goatin, Paola .
NUMERISCHE MATHEMATIK, 2016, 132 (02) :217-241
[9]   Kruzkov's estimates for scalar conservation laws revisited [J].
Bouchut, F ;
Perthame, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) :2847-2870
[10]   A numerical scheme for the one-dimensional pressureless gases system [J].
Boudin, Laurent ;
Mathiaud, Julien .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (06) :1729-1746