Isovalent dopant-vacancy clusters in silicon: Density functional theory calculations

被引:1
作者
Kuganathan, N. [1 ]
Sgourou, E. N. [2 ]
Chroneos, A. [1 ,3 ]
Londos, C. A. [2 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2BP, England
[2] Natl & Kapodistrian Univ Athens, Phys Dept, Solid State Phys Sect, Panepistimiopolis Zografos, Athens 15784, Greece
[3] Univ Thessaly, Dept Elect & Comp Engn, Volos 38221, Greece
关键词
Silicon; Carbon; Isovalent dopant; Vacancy; OXYGEN PRECIPITATION; INDUCED DEFECTS; CARBON; LEAD; TIN; IMPURITY; SI;
D O I
10.1016/j.physb.2023.415540
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Isovalent dopants (D) incorporated in the silicon (Si) lattice can readily associate with vacancies to form dopantvacancy pairs. Theoretical and experimental studies have shown that vacancies (V) tent to accumulate around isovalent dopants to form DVn clusters, where D is carbon (C) germanium (Ge), tin (Sn) and lead (Pb). Using spin polarised density functional theory, we examine the lowest energy structures of D, DV and VDV (D = C, Ge, Sn and Pb) and the energies to form defects and defect clusters from point defects. The results show that substitution of Ge is thermodynamically favourable. Formation of DV and VDV clusters is endoergic for all for dopants. Binding is favourable for all clusters and even more favourable for larger dopants such Sn and Pb. The results are discussed using ionisation energy, structural parameters, Bader charges and electronic structures.
引用
收藏
页数:8
相关论文
共 79 条
[41]   On the table-like magnetocaloric effect, microstructure and mechanical properties of LaxFe11.6Si1.4 system [J].
Kavita, S. ;
Alagusoundarya, M. ;
Ramakrishna, V. V. ;
Suresh, V ;
Bhatt, Pramod ;
Srimathi, P. ;
Archana, R. ;
Kar, Debendranath ;
Thomas, Tiju ;
Gopalan, R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 895
[42]   Peculiarities of vacancy-related defects formation in Si doped with tin [J].
Khirunenko, LI ;
Kobzar, OO ;
Pomozov, YV ;
Sosnin, MG ;
Tripachko, MO .
PHYSICA B-CONDENSED MATTER, 2003, 340 :541-545
[43]   Carrier Lifetime in 60Co Gamma and 1 MeV Electron-Irradiated Tin-Doped n-Type Czochralski Silicon: Conditions for Improving Radiation Hardness [J].
Kras'ko, Mykola ;
Kolosiuk, Andrii ;
Voitovych, Vasyl ;
Povarchuk, Vasyl .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (23)
[44]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[45]   Effects of Antimony- and Tin-Doping on the Mechanical Propertiesof Czochralski Silicon: Revealing the Role of Electrical Activity of Antimony [J].
Lan, Wu ;
Sun, Yuxin ;
Zhao, Tong ;
Yang, Deren ;
Ma, Xiangyang .
SILICON, 2020, 12 (06) :1433-1439
[46]   Tin-vacancy acceptor levels in electron-irradiated n-type silicon [J].
Larsen, AN ;
Goubet, JJ ;
Mejlholm, P ;
Christensen, JS ;
Fanciulli, M ;
Gunnlaugsson, HP ;
Weyer, G ;
Petersen, JW ;
Resende, A ;
Kaukonen, M ;
Jones, R ;
Öberg, S ;
Briddon, PR ;
Svensson, BG ;
Lindström, JL ;
Dannefaer, S .
PHYSICAL REVIEW B, 2000, 62 (07) :4535-4544
[47]   Carbon-tin defects in silicon - art. no. 125212 [J].
Lavrov, EV ;
Fanciulli, M ;
Kaukonen, M ;
Jones, R ;
Briddon, PR .
PHYSICAL REVIEW B, 2001, 64 (12)
[48]   Germanium effect on oxygen precipitation in Czochralski silicon [J].
Li, H ;
Yang, DR ;
Ma, XY ;
Yu, XG ;
Que, DL .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (08) :4161-4165
[49]   Vacancy-oxygen defects in silicon: the impact of isovalent doping [J].
Londos, C. A. ;
Sgourou, E. N. ;
Hall, D. ;
Chroneos, A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2014, 25 (06) :2395-2410
[50]   Infrared signals correlated with self-interstitial clusters in neutron-irradiated silicon [J].
Londos, C. A. ;
Antonaras, G. ;
Chroneos, A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2013, 24 (11) :4328-4331