Limit cycle bifurcations near a double 2-polycycle on the cylinder

被引:3
作者
Cai, Meilan [1 ]
Han, Maoan [2 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276005, Shandong, Peoples R China
[2] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 130卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Alien limit cycle; Bifurcation; Cylinder system; Stability; HOMOCLINIC LOOPS; SYSTEMS; QUANTITIES; STABILITY;
D O I
10.1016/j.cnsns.2023.107737
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the bifurcation problem of limit cycles near a double 2-polycycle for cylinder near-Hamiltonian system. We first study the stability of a general homoclinic loop type II on the cylinder, and then obtain certain results on the number and distribution of limit cycles for the cylinder near-Hamiltonian system near the double 2-polycycle by using the Melnikov function method and the method of stability-changing of a homoclinic loop type I or II. Furthermore, we provide a way to find alien limit cycles for cylinder near Hamiltonian system. As applications, we obtain the number of limit cycles of a class of cylinder near-Hamiltonian systems.
引用
收藏
页数:29
相关论文
共 33 条
[1]  
Andronov A.A., 1973, Theory of Bifurcations of Dynamical Systems on a Plane
[2]  
Caubergh M, 2007, COMMUN PUR APPL ANAL, V6, P1
[3]  
Dulac H., 1923, B SOC MATH FRANCE, V51, P45
[4]  
Feng B, 1985, Acta Math Sinica, V28, P53
[5]   On the number of limit cycles for perturbed pendulum equations [J].
Gasull, A. ;
Geyer, A. ;
Manosas, F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :2141-2167
[6]  
Guchenheimer J, 1983, Nonliear oscillations, dynamical systems, and bifurcation of vector fields
[7]   On the stability of double homoclinic and heteroclinic cycles [J].
Han, M ;
Hu, SC ;
Liu, XB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (05) :701-713
[8]   Existence and uniqueness of the periodic orbits of a class of cylinder equations [J].
Han, M ;
Jiang, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (01) :106-120
[9]  
Han M., 2017, BIFURCATION THEORY L
[10]  
Han M., 2000, Science in China Series A Mathematics, V30, P401