The Neurogenetics of Functional Connectivity Alterations in Autism: Insights From Subtyping in 657 Individuals

被引:16
作者
Rasero, Javier [1 ]
Jimenez-Marin, Antonio [2 ,3 ]
Diez, Ibai [4 ,5 ,6 ,7 ]
Toro, Roberto [8 ]
Hasan, Mazahir T. [9 ,10 ]
Cortes, Jesus M. [2 ,10 ,11 ]
机构
[1] Carnegie Mellon Univ, Dept Psychol, Cognit Axon Lab, Pittsburgh, PA 15289 USA
[2] Biocruces Bizkaia Hlth Res Inst, Computat Neuroimaging Lab, Baracaldo, Spain
[3] Univ Basque Country, Biomed Res Doctorate Program, Leioa, Spain
[4] Massachusetts Gen Hosp, Sch Med, Dept Radiol, Div Nucl Med & Mol Imaging, Boston, MA 02114 USA
[5] Harvard Med Sch, Boston, MA USA
[6] Massachusetts Gen Hosp, Dept Radiol, Gordon Ctr Med Imaging, Boston, MA 02115 USA
[7] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02114 USA
[8] Univ Paris, Inst Pasteur, Dept Neurosci, Paris, France
[9] Achucarro Basque Ctr Neurosci, Lab Brain Circuits Therapeut, Leioa, Spain
[10] Ikerbasque, Basque Fdn Sci, Bilbao, Spain
[11] Univ Basque Country, Dept Cell Biol & Histol, Leioa, Spain
关键词
SPECTRUM DISORDER; BRAIN; NETWORK; CLASSIFICATION; EXPRESSION; CHILDREN;
D O I
10.1016/j.biopsych.2023.04.014
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
BACKGROUND: There is little consensus and controversial evidence on anatomical alterations in the brains of people with autism spectrum disorder (ASD), due in part to the large heterogeneity present in ASD, which in turn is a major drawback for developing therapies. One strategy to characterize this heterogeneity in ASD is to cluster large-scale functional brain connectivity profiles. METHODS: A subtyping approach based on consensus clustering of functional brain connectivity patterns was applied to a population of 657 autistic individuals with quality-assured neuroimaging data. We then used highresolution gene transcriptomic data to characterize the molecular mechanism behind each subtype by performing enrichment analysis of the set of genes showing a high spatial similarity with the profiles of functional connectivity alterations between each subtype and a group of typically developing control participants. RESULTS: Two major stable subtypes were found: subtype 1 exhibited hypoconnectivity (less average connectivity than typically developing control participants) and subtype 2, hyperconnectivity. The 2 subtypes did not differ in structural imaging metrics in any of the analyzed regions (68 cortical and 14 subcortical) or in any of the behavioral scores (including IQ, Autism Diagnostic Interview, and Autism Diagnostic Observation Schedule). Finally, only subtype 2, comprising about 43% of ASD participants, led to significant enrichments after multiple testing corrections. Notably, the dominant enrichment corresponded to excitation/inhibition imbalance, a leading well-known primary mechanism in the pathophysiology of ASD. CONCLUSIONS: Our results support a link between excitation/inhibition imbalance and functional connectivity alterations, but only in one ASD subtype, overall characterized by brain hyperconnectivity and major alterations in somatomotor and default mode networks.
引用
收藏
页码:804 / 813
页数:10
相关论文
共 82 条
[1]   Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach [J].
Alaerts, Kaat ;
Geerlings, Franca ;
Herremans, Lynn ;
Swinnen, Stephan P. ;
Verhoeven, Judith ;
Sunaert, Stefan ;
Wenderoth, Nicole .
PLOS ONE, 2015, 10 (08)
[2]   Functional connectivity magnetic resonance imaging classification of autism [J].
Anderson, Jeffrey S. ;
Nielsen, Jared A. ;
Froehlich, Alyson L. ;
DuBray, Molly B. ;
Druzgal, T. Jason ;
Cariello, Annahir N. ;
Cooperrider, Jason R. ;
Zielinski, Brandon A. ;
Ravichandran, Caitlin ;
Fletcher, P. Thomas ;
Alexander, Andrew L. ;
Bigler, Erin D. ;
Lange, Nicholas ;
Lainhart, Janet E. .
BRAIN, 2011, 134 :3739-3751
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Identification of biological mechanisms underlying a multidimensional ASD phenotype using machine learning [J].
Asif, Muhammad ;
Martiniano, Hugo F. M. C. ;
Marques, Ana Rita ;
Santos, Joao Xavier ;
Vilela, Joana ;
Rasga, Celia ;
Oliveira, Guiomar ;
Couto, Francisco M. ;
Vicente, Astrid M. .
TRANSLATIONAL PSYCHIATRY, 2020, 10 (01)
[5]  
Bhandari R, 2020, ADV NEUROBIOL, V24, P97, DOI 10.1007/978-3-030-30402-7_4
[6]   Central neurogenetic signatures of the visuomotor integration system [J].
Bueicheku, Elisenda ;
Aznarez-Sanado, Maite ;
Diez, Ibai ;
Uquillas, Federico d'Oleire ;
Ortiz-Teran, Laura ;
Qureshi, Abid Y. ;
Sunol, Maria ;
Basaia, Silvia ;
Ortiz-Teran, Elena ;
Pastor, Maria A. ;
Sepulcre, Jorge .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (12) :6836-6843
[7]   Generative modeling of brain maps with spatial autocorrelation [J].
Burt, Joshua B. ;
Helmer, Markus ;
Shinn, Maxwell ;
Anticevic, Alan ;
Murray, John D. .
NEUROIMAGE, 2020, 220
[8]   Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography [J].
Burt, Joshua B. ;
Demirtas, Murat ;
Eckner, William J. ;
Navejar, Natasha M. ;
Ji, Jie Lisa ;
Martin, William J. ;
Bernacchia, Alberto ;
Anticevic, Alan ;
Murray, John D. .
NATURE NEUROSCIENCE, 2018, 21 (09) :1251-+
[9]   Frontal networks in adults with autism spectrum disorder [J].
Catani, Marco ;
Dell'Acqua, Flavio ;
Budisavljevic, Sanja ;
Howells, Henrietta ;
Thiebaut de Schotten, Michel ;
Froudist-Walsh, Sean ;
D'Anna, Lucio ;
Thompson, Abigail ;
Sandrone, Stefano ;
Bullmore, Edward T. ;
Suckling, John ;
Baron-Cohen, Simon ;
Lombardo, Michael V. ;
Wheelwright, Sally J. ;
Chakrabarti, Bhismadev ;
Lai, Meng-Chuan ;
Ruigrok, Amber N. V. ;
Leemans, Alexander ;
Ecker, Christine ;
Craig, Michael C. ;
Murphy, Declan G. M. .
BRAIN, 2016, 139 :616-630
[10]   Reduced inhibitory gate in the barrel cortex of Neuroligin3(R451C) knock-in mice, an animal model of autism spectrum disorders [J].
Cellot, Giada ;
Cherubini, Enrico .
PHYSIOLOGICAL REPORTS, 2014, 2 (07)