FLOWS OF SEMICLASSICAL TRAJECTORIES AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE SCHRODINGER EQUATION

被引:0
作者
Khablov, Vladislav Vladimirovich [1 ]
机构
[1] Novosibirsk State Tech Univ, Pr K Marx 20, Novosibirsk 630073, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2023年 / 20卷 / 02期
关键词
D O I
10.33048/semi.2023.20.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:773 / 784
页数:12
相关论文
共 50 条
[41]   Asymptotic soliton train solutions of the defocusing nonlinear Schrodinger equation [J].
Kamchatnov, AM ;
Kraenkel, RA ;
Umarov, BA .
PHYSICAL REVIEW E, 2002, 66 (03)
[42]   Asymptotic behavior of multiple solutions for quasilinear Schrodinger equations [J].
Zhang, Xian ;
Huang, Chen .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (64) :1-28
[43]   Asymptotic analysis of solutions of a radial Schrodinger equation with oscillating potential [J].
Bodine, Sigrun ;
Lutz, D. A. .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (15) :1641-1663
[44]   GLOBAL ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO QUASILINEAR SCHRODINGER EQUATIONS [J].
Zhang, Lin ;
Song, Xianfa .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
[45]   ASYMPTOTIC EXPANSION OF SOLUTIONS TO THE NONLINEAR SCHRODINGER EQUATION WITH POWER NONLINEARITY [J].
Masaki, Satoshi .
KYUSHU JOURNAL OF MATHEMATICS, 2009, 63 (01) :51-82
[46]   The stochastic Burgers equation with vorticity: Semiclassical asymptotic series solutions with applications [J].
Neate, Andrew ;
Reasons, Scott ;
Truman, Aubrey .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (08)
[47]   On the Hierarchical Behavior of Solutions of the Maryland Equation in the Semiclassical Approximation [J].
Klopp, F. ;
Fedotov, A. A. .
MATHEMATICAL NOTES, 2020, 108 (5-6) :906-910
[48]   On the Hierarchical Behavior of Solutions of the Maryland Equation in the Semiclassical Approximation [J].
F. Klopp ;
A. A. Fedotov .
Mathematical Notes, 2020, 108 :906-910
[49]   Solutions of the Dirichlet-Sch problem and asymptotic properties of solutions for the Schrodinger equation [J].
Qiao, Lei .
APPLIED MATHEMATICS LETTERS, 2017, 71 :44-50
[50]   The semiclassical focusing nonlinear Schrodinger equation [J].
Buckingham, Robert ;
Tovbis, Alexander ;
Venakides, Stephanos ;
Zhou, Xin .
RECENT ADVANCES IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 65 :47-80