Online correction of multi-scene load model parameters based on measured data

被引:0
作者
Zeng, Yuan [1 ]
Zhang, Zhenyu [1 ]
Ma, Junlong [1 ]
Wang, Hongmei [2 ]
机构
[1] Tianjin Univ, Minist Educ, Key Lab Smart Grid, Tianjin, Peoples R China
[2] Tianjin Med Univ, Sch Basic Med Sci, Tianjin, Peoples R China
来源
2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM | 2023年
基金
中国国家自然科学基金;
关键词
Load modeling; Parameter identification; Online correction; MOPSO;
D O I
10.1109/PESGM52003.2023.10252222
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In identifying high-voltage load parameters, the identification method based on measurement data has limited application scenarios and poor identification timeliness. To solve this problem, this paper takes the composite load model with distributed photovoltaic power as the research object. A dual objective function is constructed based on the load bus's fitting degree of active and reactive power. The multi-objective particle swarm optimization algorithm is used to identify the proportional parameters of the model in the small disturbance scenario where the voltage fluctuation caused by the power change of different components of the load model is less than 5%. Combined with the identification of load parameters in large disturbance scenarios, an online load parameter correction system based on load bus measurement data is proposed, which can automatically adapt to the scene. Through the validation of the EPRI-36 node system, the proposed method can realize the high-precision identification of load parameters in various scenarios and greatly improve the timeliness of load parameter correction.
引用
收藏
页数:5
相关论文
共 13 条
  • [1] Hybrid Top-Down and Bottom-Up Approach for Residential Load Compositions and Percentages
    Alahmed, Ahmed S.
    Almuhaini, Muhammed M.
    [J]. 2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 1 - 6
  • [2] [Anonymous], 2022, IEEEStd2781-2022, P1
  • [3] Avila NF, 2020, IEEE POW ENER SOC GE
  • [4] WECC Composite Load Model Parameter Identification Using Evolutionary Deep Reinforcement Learning
    Bu, Fankun
    Ma, Zixiao
    Yuan, Yuxuan
    Wang, Zhaoyu
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (06) : 5407 - 5417
  • [5] Handling multiple objectives with particle swarm optimization
    Coello, CAC
    Pulido, GT
    Lechuga, MS
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) : 256 - 279
  • [6] Gaikwad A., 2016, P IEEE PES TRANSM DI, P1
  • [7] Composite load modeling via measurement approach
    He, RM
    Ma, J
    Hill, DJ
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (02) : 663 - 672
  • [8] The Parameters Selection of PSO Algorithm influencing On performance of Fault Diagnosis
    He, Yan
    Ma, Wei Jin
    Zhang, Ji Ping
    [J]. 2016 INTERNATIONAL CONFERENCE ON MECHATRONICS, MANUFACTURING AND MATERIALS ENGINEERING (MMME 2016), 2016, 63
  • [9] Leinakse M., 2019, 2019 IEEE PESGM ATL, P1
  • [10] Practical issues in load modeling for voltage stability studies
    Morison, K
    Hamadani, H
    Wang, L
    [J]. 2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, : 1392 - 1397