Mobile Edge Computing and AI Enabled Web3 Metaverse over 6G Wireless Communications: A Deep Reinforcement Learning Approach

被引:0
作者
Yu, Wenhan [1 ]
Chua, Terence Jie [1 ]
Zhao, Jun [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
来源
2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING | 2023年
关键词
Metaverse; resource allocation; reinforcement learning; wireless networks; SERVICE; QUALITY;
D O I
10.1109/VTC2023-Spring57618.2023.10199534
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Metaverse is gaining attention among academics as maturing technologies empower the promises and envisagements of a multi-purpose, integrated virtual environment. An interactive and immersive socialization experience between people is one of the promises of the Metaverse. In spite of the rapid advancements in current technologies, the computation required for a smooth, seamless and immersive socialization experience in the Metaverse is overbearing, and the accumulated user experience is essential to be considered. The computation burden calls for computation offloading, where the integration of virtual and physical world scenes is offloaded to an edge server. This paper introduces a novel Quality-of-Service (QoS) model for the accumulated experience in multi-user socialization on a multichannel wireless network. This QoS model utilizes deep reinforcement learning approaches to find the near-optimal channel resource allocation. Comprehensive experiments demonstrate that the adoption of the QoS model enhances the overall socialization experience.
引用
收藏
页数:5
相关论文
共 18 条
[1]  
[Anonymous], 1951, Nat. Bur. Standards Appl. Math. Ser.
[2]   Quality-of-service in cloud computing: modeling techniques and their applications [J].
Ardagna, Danilo ;
Casale, Giuliano ;
Ciavotta, Michele ;
Perez, Juan F. ;
Wang, Weikun .
JOURNAL OF INTERNET SERVICES AND APPLICATIONS, 2014, 5 (01)
[3]  
Balen Josip, 2011, Recent Patents on Computer Science, V4, P188, DOI 10.2174/1874479611104030188
[4]   Decentralized AI: Edge Intelligence and Smart Blockchain, Metaverse, Web3, and DeSci [J].
Cao, Longbing .
IEEE INTELLIGENT SYSTEMS, 2022, 37 (03) :6-19
[5]  
Du HY, 2021, Arxiv, DOI arXiv:2111.00511
[6]  
Han Y., 2021, arXiv
[7]   Educational applications of metaverse: possibilities and limitations [J].
Kye, Bokyung ;
Han, Nara ;
Kim, Eunji ;
Park, Yeonjeong ;
Jo, Soyoung .
JOURNAL OF EDUCATIONAL EVALUATION FOR HEALTH PROFESSIONS, 2021, 18 :1-13
[8]   Applications of Deep Reinforcement Learning in Communications and Networking: A Survey [J].
Luong, Nguyen Cong ;
Hoang, Dinh Thai ;
Gong, Shimin ;
Niyato, Dusit ;
Wang, Ping ;
Liang, Ying-Chang ;
Kim, Dong In .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (04) :3133-3174
[9]  
Mnih V, 2016, PR MACH LEARN RES, V48
[10]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533