Time-Dependent Hamiltonian Mechanics on a Locally Conformal Symplectic Manifold

被引:3
|
作者
Zajac, Marcin [1 ]
Sardon, Cristina [2 ]
Ragnisco, Orlando [3 ]
机构
[1] Univ Warsaw, Fac Phys, Dept Math Methods Phys, PL-02093 Warsaw, Poland
[2] Univ Politecn Madrid, Dept Appl Math, Madrid 28006, Spain
[3] Univ Roma Tre, Dept Math & Phys, I-00146 Rome, Italy
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 04期
关键词
canonical transformations; time-dependent hamiltonian dynamics; locally conformal symplectic; time-dependent Hamilton Jacobi; CANONICAL-TRANSFORMATIONS; GEOMETRY; DYNAMICS; SYSTEMS; POISSON;
D O I
10.3390/sym15040843
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we aim at presenting a concise but also comprehensive study of time-dependent (t-dependent) Hamiltonian dynamics on a locally conformal symplectic (lcs) manifold. We present a generalized geometric theory of canonical transformations in order to formulate an explicitly time-dependent geometric Hamilton-Jacobi theory on lcs manifolds, extending our previous work with no explicit time-dependence. In contrast to previous papers concerning locally conformal symplectic manifolds, the introduction of the time dependency that this paper presents, brings out interesting geometric properties, as it is the case of contact geometry in locally symplectic patches. To conclude, we show examples of the applications of our formalism, in particular, we present systems of differential equations with time-dependent parameters, which admit different physical interpretations as we shall point out.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Locally conformal symplectic structures on Lie algebras of type I and their solvmanifolds
    Origlia, Marcos
    FORUM MATHEMATICUM, 2019, 31 (03) : 563 - 578
  • [32] The pendulum-slosh problem: Simulation using a time-dependent conformal mapping
    Turner, M. R.
    Bridges, T. J.
    Ardakani, H. Alemi
    JOURNAL OF FLUIDS AND STRUCTURES, 2015, 59 : 202 - 223
  • [33] On a Time-Dependent Nonholonomic Oscillator
    Tsiganov, A. V.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (03) : 399 - 409
  • [34] TIME-DEPENDENT QUANTUM BILLIARDS
    Schmelcher, P.
    Lenz, F.
    Matrasulov, D.
    Sobirov, Z. A.
    Avazbaev, S. K.
    COMPLEX PHENOMENA IN NANOSCALE SYSTEMS, 2009, : 81 - +
  • [35] Lattices in almost abelian Lie groups with locally conformal Kahler or symplectic structures
    Andrada, A.
    Origlia, M.
    MANUSCRIPTA MATHEMATICA, 2018, 155 (3-4) : 389 - 417
  • [36] Algebraic treatment of the time-dependent Jaynes-Cummings Hamiltonian including nonlinear terms
    Cordero, Sergio
    Recamier, Jose
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (38)
  • [37] Shortcuts to adiabaticity in a time-dependent box
    del Campo, A.
    Boshier, M. G.
    SCIENTIFIC REPORTS, 2012, 2
  • [38] Quantum propagator for a general time-dependent quadratic Hamiltonian: Application to interacting oscillators in external fields
    Janjan, Shohreh
    Kheirandish, Fardin
    PHYSICA SCRIPTA, 2023, 98 (06)
  • [39] Time-Dependent Billiards
    Loskutov, Alexander
    Leonel, Edson D.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [40] QUAISI INVARIANT CONHARMONIC TENSOR OF SPECIAL CLASSES OF LOCALLY CONFORMAL ALMOST COSYMPLECTIC MANIFOLD
    Al-Hussaini, F. H.
    Abood, H. M.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2020, 30 (02): : 147 - 157