Time-Dependent Hamiltonian Mechanics on a Locally Conformal Symplectic Manifold

被引:4
作者
Zajac, Marcin [1 ]
Sardon, Cristina [2 ]
Ragnisco, Orlando [3 ]
机构
[1] Univ Warsaw, Fac Phys, Dept Math Methods Phys, PL-02093 Warsaw, Poland
[2] Univ Politecn Madrid, Dept Appl Math, Madrid 28006, Spain
[3] Univ Roma Tre, Dept Math & Phys, I-00146 Rome, Italy
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 04期
关键词
canonical transformations; time-dependent hamiltonian dynamics; locally conformal symplectic; time-dependent Hamilton Jacobi; CANONICAL-TRANSFORMATIONS; GEOMETRY; DYNAMICS; SYSTEMS; POISSON;
D O I
10.3390/sym15040843
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we aim at presenting a concise but also comprehensive study of time-dependent (t-dependent) Hamiltonian dynamics on a locally conformal symplectic (lcs) manifold. We present a generalized geometric theory of canonical transformations in order to formulate an explicitly time-dependent geometric Hamilton-Jacobi theory on lcs manifolds, extending our previous work with no explicit time-dependence. In contrast to previous papers concerning locally conformal symplectic manifolds, the introduction of the time dependency that this paper presents, brings out interesting geometric properties, as it is the case of contact geometry in locally symplectic patches. To conclude, we show examples of the applications of our formalism, in particular, we present systems of differential equations with time-dependent parameters, which admit different physical interpretations as we shall point out.
引用
收藏
页数:23
相关论文
共 45 条
[1]   CLASS OF HERMITIAN MANIFOLDS [J].
ABE, K .
INVENTIONES MATHEMATICAE, 1979, 51 (02) :103-121
[2]  
Abraham R., 1978, Foundations of Mechanics
[3]   Symplectic geometry and topology [J].
Arnold, VI .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) :3307-3343
[4]   GENERALIZED CANONICAL-TRANSFORMATIONS FOR TIME-DEPENDENT SYSTEMS [J].
ASOREY, M ;
CARINENA, JF ;
IBORT, LA .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2745-2750
[5]   Lie-Hamilton systems on the plane: Properties, classification and applications [J].
Ballesteros, A. ;
Blasco, A. ;
Herranz, F. J. ;
de Lucas, J. ;
Sardon, C. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (08) :2873-2907
[6]   From constants of motion to superposition rules for Lie-Hamilton systems [J].
Ballesteros, A. ;
Carinena, J. F. ;
Herranz, F. J. ;
de Lucas, J. ;
Sardon, C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (28)
[7]   Contact pairs [J].
Bande, G ;
Hadjar, A .
TOHOKU MATHEMATICAL JOURNAL, 2005, 57 (02) :247-260
[8]  
Bande G, 2011, CONTEMP MATH, V542, P85
[9]  
Bande G., 2000, THESIS U HAUTE ALSAC
[10]  
Banyaga A., 2000, INFINITE DIMENSIONAL, P79