Time-Dependent Hamiltonian Mechanics on a Locally Conformal Symplectic Manifold

被引:3
|
作者
Zajac, Marcin [1 ]
Sardon, Cristina [2 ]
Ragnisco, Orlando [3 ]
机构
[1] Univ Warsaw, Fac Phys, Dept Math Methods Phys, PL-02093 Warsaw, Poland
[2] Univ Politecn Madrid, Dept Appl Math, Madrid 28006, Spain
[3] Univ Roma Tre, Dept Math & Phys, I-00146 Rome, Italy
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 04期
关键词
canonical transformations; time-dependent hamiltonian dynamics; locally conformal symplectic; time-dependent Hamilton Jacobi; CANONICAL-TRANSFORMATIONS; GEOMETRY; DYNAMICS; SYSTEMS; POISSON;
D O I
10.3390/sym15040843
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we aim at presenting a concise but also comprehensive study of time-dependent (t-dependent) Hamiltonian dynamics on a locally conformal symplectic (lcs) manifold. We present a generalized geometric theory of canonical transformations in order to formulate an explicitly time-dependent geometric Hamilton-Jacobi theory on lcs manifolds, extending our previous work with no explicit time-dependence. In contrast to previous papers concerning locally conformal symplectic manifolds, the introduction of the time dependency that this paper presents, brings out interesting geometric properties, as it is the case of contact geometry in locally symplectic patches. To conclude, we show examples of the applications of our formalism, in particular, we present systems of differential equations with time-dependent parameters, which admit different physical interpretations as we shall point out.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] THE UBIQUITY OF THE SYMPLECTIC HAMILTONIAN EQUATIONS IN MECHANICS
    Balseiro, P.
    de Leon, M.
    Marrero, J. C.
    Martin de Diego, D.
    JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (01) : 1 - 34
  • [2] Invariants for time-dependent Hamiltonian systems
    Struckmeier, J.
    Riedel, C.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 II): : 265031 - 265039
  • [3] Computing the effective Hamiltonian for a time-dependent Hamiltonian
    Nolte, Martin
    Kroener, Dietmar
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 815 - 824
  • [4] On time-dependent Hamiltonian realizations of planar and nonplanar systems
    Esen, Ogul
    Guha, Partha
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 127 : 32 - 45
  • [5] An underlying geometrical manifold for Hamiltonian mechanics
    Horwitz, L. P.
    Yahalom, A.
    Levitan, J.
    Lewkowicz, M.
    FRONTIERS OF PHYSICS, 2017, 12 (01)
  • [6] Symplectic propagators for the Kepler problem with time-dependent mass
    Bader, Philipp
    Blanes, Sergio
    Casas, Fernando
    Kopylov, Nikita
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (06)
  • [7] On locally conformal symplectic manifolds of the first kind
    Bazzoni, Giovanni
    Carlos Marrero, Juan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 143 : 1 - 57
  • [8] Locally conformal symplectic blow-ups
    Yang, Song
    Yang, Xiangdong
    Zhao, Guosong
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 50 : 11 - 19
  • [9] The convexity package for Hamiltonian actions on conformal symplectic manifolds
    Chen, Youming
    Sjamaar, Reyer
    Yang, Xiangdong
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1143 - 1173
  • [10] Time-dependent mechanics and Lagrangian submanifolds of presymplectic and Poisson manifolds
    Guzman, E.
    Marrero, J. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (50)