A comparative study of prediction of compressive strength of ultra-high performance concrete using soft computing technique

被引:47
作者
Kumar, Rakesh [1 ]
Rai, Baboo [1 ]
Samui, Pijush [1 ]
机构
[1] Natl Inst Technol, Dept Civil Engn, Patna, India
关键词
deep neural network; extreme gradient boosting; extra tree regressor; gradient boosting; random forest regressor; ultra-high performance concrete; voting regressor; RANDOM FOREST; MECHANICAL-PROPERTIES; RELIABILITY-ANALYSIS;
D O I
10.1002/suco.202200850
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete which is the most commercialized construction material and thus it plays a key role in this era of development and hence its evolution is of utmost importance and therefore the evolution of the quality of concrete to that of its highly evolved type namely, ultra-high performance concrete (UHPC) is undeniably the boon to this sector. Though, the correlations between the technical characteristics of UHPC and the composition of its mixture are complicated, nonlinear, and complex to characterize using standard statistical techniques. This paper is intended to use both deep neural network and ensemble machine learning algorithms namely gradient boosting, extreme gradient boosting, random forest regressor, extra tree regressor, and voting regressor trained with an 810 UHPC mixture collections with 15 input variables to predict its compressive strength. After adjusting a regression model, the prediction efficiency and generalization ability of the developed models are validated using a number of performance parameters. It was established that all employed models performed better at forecasting result, the extra tree regressor was the most accurate followed by extreme gradient boosting.
引用
收藏
页码:5538 / 5555
页数:18
相关论文
共 73 条
[1]   Study of nonlinear relationships between dosage mixture design and the compressive strength of UHPC [J].
Abellan-Garcia, Joaquin .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
[2]   Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees [J].
Ahmad, Muhammad Waseem ;
Reynolds, Jonathan ;
Rezgui, Yacine .
JOURNAL OF CLEANER PRODUCTION, 2018, 203 :810-821
[3]   Development of ultra-high performance concrete with locally available materials [J].
Alsalman, Ali ;
Dang, Canh N. ;
Hale, W. Micah .
CONSTRUCTION AND BUILDING MATERIALS, 2017, 133 :135-145
[4]   Multiscale soft computing-based model of shear strength of steel fibre-reinforced concrete beams [J].
Alzabeebee, Saif ;
Al-Hamd, Rwayda Kh. S. ;
Nassr, Ali ;
Kareem, Mohammed ;
Keawsawasvong, Suraparb .
INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2023, 8 (01)
[5]  
Arik SO, 2021, AAAI CONF ARTIF INTE, V35, P6679
[6]  
Armaghani D. J., APPL SCI USE NEURO S
[7]   Soft computing-based techniques for concrete beams shear strength [J].
Armaghani, Danial J. ;
Hatzigeorgiou, George D. ;
Karamani, Chrysoula ;
Skentou, Athanasia ;
Zoumpoulaki, Ioanna ;
Asteris, Panagiotis G. .
3RD INTERNATIONAL CONFERENCE ON STRUCTURAL INTEGRITY (ICSI 2019), 2019, 17 :924-933
[8]   Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks [J].
Asteris, Panagiotis G. ;
Gavriilaki, Eleni ;
Touloumenidou, Tasoula ;
Koravou, Evaggelia-Evdoxia ;
Koutra, Maria ;
Papayanni, Penelope Georgia ;
Pouleres, Alexandros ;
Karali, Vassiliki ;
Lemonis, Minas E. ;
Mamou, Anna ;
Skentou, Athanasia D. ;
Papalexandri, Apostolia ;
Varelas, Christos ;
Chatzopoulou, Fani ;
Chatzidimitriou, Maria ;
Chatzidimitriou, Dimitrios ;
Veleni, Anastasia ;
Rapti, Evdoxia ;
Kioumis, Ioannis ;
Kaimakamis, Evaggelos ;
Bitzani, Milly ;
Boumpas, Dimitrios ;
Tsantes, Argyris ;
Sotiropoulos, Damianos ;
Papadopoulou, Anastasia ;
Kalantzis, Ioannis G. ;
Vallianatou, Lydia A. ;
Armaghani, Danial J. ;
Cavaleri, Liborio ;
Gandomi, Amir H. ;
Hajihassani, Mohsen ;
Hasanipanah, Mahdi ;
Koopialipoor, Mohammadreza ;
Lourenco, Paulo B. ;
Samui, Pijush ;
Zhou, Jian ;
Sakellari, Ioanna ;
Valsami, Serena ;
Politou, Marianna ;
Kokoris, Styliani ;
Anagnostopoulos, Achilles .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2022, 26 (05) :1445-1455
[9]   A Novel Heuristic Algorithm for the Modeling and Risk Assessment of the COVID-19 Pandemic Phenomenon [J].
Asteris, Panagiotis G. ;
Douyika, Maria G. ;
Karamani, Chrysoula A. ;
Skentou, Athanasia D. ;
Chlichlia, Katerina ;
Cayaleri, Liborio ;
Daras, Tryfon ;
Armaghani, Danial J. ;
Zaoutis, Theoklis E. .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 125 (02) :815-828
[10]   Concrete compressive strength using artificial neural networks [J].
Asteris, Panagiotis G. ;
Mokos, Vaseilios G. .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (15) :11807-11826