Experimental investigation and performance evaluation of an oval tubular solar still with phase change material

被引:41
|
作者
Aly, Wael I. A. [1 ]
Tolba, Mostafa A. [1 ]
Abdelmagied, Mahmoud [1 ]
机构
[1] Helwan Univ, Fac Technol & Educ, Dept Refrigerat & Air Conditioning Technol, Cairo 11282, Egypt
关键词
Solar desalination; Oval tubular solar still; PCM; Productivity enhancement; Water depth; Exergy efficiency; THERMAL STRATIFICATION; EXERGY ANALYSIS; ABSORBER PLATE; WATER DEPTH; ENERGY; DESALINATION; HEAT; ENHANCEMENT; PCM; NANOFLUIDS;
D O I
10.1016/j.applthermaleng.2022.119628
中图分类号
O414.1 [热力学];
学科分类号
摘要
The problem of freshwater scarcity is a major issue for people all over the world. Solar still is one of the most simplest and affordable ways to produce freshwater using solar energy which is available with no cost and eco-friendly. Recently, tubular solar stills (TSS) have gained popularity as one of the best solutions for acquiring pure water, especially in arid and coastal areas. The main objective of this paper is to enhance the productivity and efficiency of TSS by introducing a new form/shape, the oval tubular solar still (OTSS), integrated with cover cooling and phase change material (PCM). The OTSS is made of a transparent oval tube that is permeable to sunlight from all directions to maximize solar irradiance, and it is integrated with a black basin to improve absorption and water evaporation. It has an appropriate level of flexibility, durability, and low cost. Experiments were conducted out in the climatic conditions of Cairo, Egypt. This paper investigated different basin water depths and different water cover cooling flow rates to obtain their optimal values. Moreover, the effects of using PCM as a thermal management solution were studied in detail. In the case of no cooling, it is observed that the production rate decreases with increasing the water depth in the basin and the maximum production rate reached up to 5.21 L/m2/day at the optimal water depth of 0.5 cm. However, with cooling, the maximum production rate of 6.34 L/m2/day was achieved at the optimum water-cooling flow rate of 2 L/h. Using the PCM the maximum production rate of 6.78 L/m2/day was able to be achieved. The efficiency and productivity of the OTSS were enhanced by 41.26 % and 32.42 %, respectively, when using PCM. Furthermore, the daily thermal exergy efficiency of the OTSS was 3.46 %, 3.85 %, and 4.14 % for the cases no cooling, with cooling and with PCM, respectively. Economically, the cost per liter of desalinated water production was $0.020, $0.017, and $0.017 for the three cases, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Experimental investigation of stepped solar still with phase change material and external condenser
    Toosi, Seyed Sina Adibi
    Goshayeshi, Hamid Reza
    Heris, Saeed Zeinali
    JOURNAL OF ENERGY STORAGE, 2021, 40
  • [2] Experimental investigation of a stepped solar still employing a phase change material, a conical tank, and a solar dish
    Dawood, Mohamed M. Khairat
    Shehata, Ali, I
    Shehata, Ahmed S.
    Kabeel, Abd Elnaby
    Ramzy, Khaled
    Abdalla, Abdalla M.
    Nabil, Tamer
    Elsabahy, Mohamed
    Elnaghi, Basem E.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (12) : 16762 - 16776
  • [3] Improving the tubular solar still performance using square and circular hollow fins with phase change materials
    Abdelgaied, Mohamed
    Zakaria, Yehya
    Kabeel, A. E.
    Essa, Fadl A.
    JOURNAL OF ENERGY STORAGE, 2021, 38
  • [4] Exergetic performance evaluation of a phase change material integrated solar still
    Sudeepthi, A.
    Arun, P.
    JOURNAL OF THERMAL ENGINEERING, 2024, 10 (06): : 1423 - 1439
  • [5] Improving the performance of tubular solar still using rotating drum Experimental and theoretical investigation
    Essa, F. A.
    Abdullah, A. S.
    Omara, Z. M.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 148 : 579 - 589
  • [6] Experimental study on the synergistic effects of phase change material, fins, and ultrasonic fogger in a pyramidal solar still
    Pandey, Nagendra
    Naresh, Y.
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [7] Experimental enhancement of tubular solar still performance using rotating cylinder, nanoparticles' coating, parabolic solar concentrator, and phase change material
    Essa, F. A.
    Abdullah, A. S.
    Alawee, Wissam H.
    Alarjani, A.
    Alqsair, Umar F.
    Shanmugan, S.
    Omara, Z. M.
    Younes, M. M.
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 29
  • [8] Enhancing solar still productivity using phase change material: Experimental investigation under the climatic conditions of Benguerir, Morocco
    Elmghari, Naouar
    Rachidi, Mohammed Badr
    Salihi, Mustapha
    Chebak, Ahmed
    Al-Dahhan, Muthanna H.
    Chhiti, Younes
    APPLIED THERMAL ENGINEERING, 2025, 269
  • [9] Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM's) for fresh water production
    Kabeel, A. E.
    Sathyamurthy, Ravishankar
    Manokar, A. Muthu
    Sharshir, Swellam W.
    Essa, F. A.
    Elshiekh, Ammar H.
    JOURNAL OF ENERGY STORAGE, 2020, 28
  • [10] Comparative Study of Tubular Solar Stills with Phase Change Material and Nano-Enhanced Phase Change Material
    Thalib, M. Mohamed
    Manokar, Athikesavan Muthu
    Essa, Fadl A.
    Vasimalai, N.
    Sathyamurthy, Ravishankar
    Garcia Marquez, Fausto Pedro
    ENERGIES, 2020, 13 (15)