A plastic-based model for in-plane shear strength of steel plate-concrete shear walls

被引:3
作者
Wang, Xingchao [1 ]
Gong, Jinxin [1 ]
Sun, Yunlun [2 ]
机构
[1] Dalian Univ Technol, Inst Struct Engn, Dalian 116024, Peoples R China
[2] Chinergy Co Ltd, Beijing 100193, Peoples R China
关键词
Nuclear facility; Steel plate-concrete shear wall; In-plane shear strength; Plastic limit theory; Lower bound solution; COMPOSITE; DESIGN;
D O I
10.1016/j.jcsr.2022.107676
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The steel plate-concrete shear wall (SCSW) has great potential being used in nuclear facilities due to its high construction efficiency and excellent structural performance. Although it is not new, but only thirty-year history of study for application in nuclear facilities. Different from other ordinary structures, nuclear facilities are low-rise buildings consisting of squat shear walls, and the in-plane, out-of-plane shear capacity and their combination are of concern in design. Currently, several equations for evaluation of in-plane shear strength of SCSW element are put forward and some are adopted by design codes with some modification. However, these equations are established based on the elastic theory and do not consider the collaborative work of infilled concrete and steel plates in limit state from an overall perspective. From the ultimate limit design point of view in current design structural codes or standards, a new model for evaluating the in-plane shear strength of the SCSW element is derived based on the lower bound plastic limit theory and two of its simplified expressions are proposed for easy application. The accuracy of the proposed equations is verified by comparing the calculated results with 14 collected experimental results. In the end, a comparison between the proposed equations and those in codes AISC N690 and JEAG 4618 is conducted.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Cyclic In-Plane Shear Behavior of Composite Plate Shear Walls-Concrete Encased
    Ji, Xiaodong
    Zhang, Shaohui
    Cheng, Xiaowei
    Jia, Xiangfu
    Xu, Mengchao
    JOURNAL OF STRUCTURAL ENGINEERING, 2023, 149 (11)
  • [2] Plasticity-based evaluation method for in-plane shear strength of steel-plate composite element
    Guo, Shuheng
    Gong, Jinxin
    Cui, Yao
    Sun, Yunlun
    Wang, Xingchao
    NUCLEAR ENGINEERING AND DESIGN, 2024, 418
  • [3] In-plane shear strength equation for fully grouted reinforced masonry shear walls
    ElDin, Hany M. Seif
    Aly, Nader
    Galal, Khaled
    ENGINEERING STRUCTURES, 2019, 190 : 319 - 332
  • [4] Plastic analysis and design of steel plate shear walls
    Berman, J
    Bruneau, M
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 2003, 129 (11): : 1448 - 1456
  • [5] Shear strength of steel plate reinforced concrete shear wall
    Zhou, Zhi
    Qian, Jiang
    Huang, Wei
    ADVANCES IN STRUCTURAL ENGINEERING, 2020, 23 (08) : 1629 - 1643
  • [6] Experimental study of the hysteretic behaviour of corrugated steel plate shear walls and steel plate reinforced concrete composite shear walls
    Wang, Wei
    Ren, Yingzi
    Lu, Zheng
    Song, Jiangliang
    Han, Bin
    Zhou, Ying
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2019, 160 : 136 - 152
  • [7] Effects of Accident Thermal Loading on In-Plane Shear Behavior of Steel-Plate Composite Walls
    Bhardwaj, Saahastaranshu R.
    Sener, Kadir C.
    Varma, Amit H.
    ENGINEERING JOURNAL-AMERICAN INSTITUTE OF STEEL CONSTRUCTION, 2023, 60 (02): : 73 - 92
  • [8] Steel-Plate Composite Wall to Reinforced Concrete Wall Mechanical ConnectionPart 2: In-Plane and Out-Of-Plane Shear Strength
    Anwar, Hassan S.
    Seo, Jungil
    Varma, Amit H.
    Nam, Yoonho
    ENGINEERING JOURNAL-AMERICAN INSTITUTE OF STEEL CONSTRUCTION, 2023, 60 (01): : 31 - 59
  • [9] Evaluation of in-plane shear strength of clt based on the real size horizontal loading shear test: The effect of species of laminae on in-plane shear strength
    Nakasima S.
    Araki Y.
    Ohashi Y.
    Nakajima S.
    Miyatake A.
    Journal of Structural and Construction Engineering, 2019, 84 (760): : 843 - 849
  • [10] In-Plane Strength and Stiffness of Cross-Laminated Timber Shear Walls
    Shahnewaz, Md
    Alam, Shahria
    Tannert, Thomas
    BUILDINGS, 2018, 8 (08)