On the Whitham system for the (2+1)-dimensional nonlinear Schrodinger equation

被引:4
|
作者
Ablowitz, Mark J. [1 ]
Cole, Justin T. [2 ]
Rumanov, Igor [1 ,3 ]
机构
[1] Univ Colorado Boulder, Dept Appl Math, Boulder, CO USA
[2] Univ Colorado Colorado Springs, Dept Math, Colorado Springs, CO USA
[3] Dept Appl Math, 1111 Engn Ctr,ECOT 225, Boulder, CO 80309 USA
关键词
nonlinear schroedinger equation; nonlinear waves; whitham modulation theory; DISPERSIVE SHOCK-WAVES; KADOMTSEV-PETVIASHVILI; DARK SOLITONS; INTEGRABILITY; INSTABILITY; MEDIA;
D O I
10.1111/sapm.12543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Whitham modulation equations are derived for the nonlinear Schrodinger equation in the plane ((2+1)-dimensional nonlinear Schrodinger [2d NLS]) with small dispersion. The modulation equations are obtained in terms of both physical and Riemann-type variables; the latter yields equations of hydrodynamic type. The complete 2d NLS Whitham system consists of six dynamical equations in evolutionary form and two constraints. As an application, we determine the linear stability of one-dimensional traveling waves. In both the elliptic and hyperbolic cases, the traveling waves are found to be unstable. This result is consistent with previous investigations of stability by other methods and is supported by direct numerical calculations.
引用
收藏
页码:380 / 419
页数:40
相关论文
共 50 条
  • [21] On the exact solution of (2+1)-dimensional cubic nonlinear Schrodinger (NLS) equation
    Saied, EA
    El-Rahman, RGA
    Ghonamy, MI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (24): : 6751 - 6770
  • [22] Bifurcations and travelling wave solutions of a (2+1)-dimensional nonlinear Schrodinger equation
    Wang, Juan
    Chen, Longwei
    Liu, Changfu
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 76 - 80
  • [23] WAVE SOLUTIONS OF A (2+1)-DIMENSIONAL GENERALIZATION OF THE NONLINEAR SCHRODINGER-EQUATION
    STRACHAN, IAB
    INVERSE PROBLEMS, 1992, 8 (05) : L21 - L27
  • [24] DEFORMED SOLITON AND POSITON SOLUTIONS FOR THE (2+1)-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION
    Yuan, Feng
    ROMANIAN REPORTS IN PHYSICS, 2022, 74 (04)
  • [25] Soliton solutions in the conformable (2+1)-dimensional chiral nonlinear Schrodinger equation
    Ghanbari, Behzad
    Gomez-Aguilar, J. F.
    Bekir, Ahmet
    JOURNAL OF OPTICS-INDIA, 2022, 51 (02): : 289 - 316
  • [26] Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrodinger Equation
    Albosaily, Sahar
    Mohammed, Wael W.
    Aiyashi, Mohammed A.
    Abdelrahman, Mahmoud A. E.
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [27] Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation
    Zhang, Hai-Qiang
    Liu, Xiao-Li
    Wen, Li-Li
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02): : 95 - 101
  • [28] A Parametric Method Optimised for the Solution of the (2+1)-Dimensional Nonlinear Schrodinger Equation
    Anastassi, Zacharias A.
    Kosti, Athinoula A.
    Rufai, Mufutau Ajani
    MATHEMATICS, 2023, 11 (03)
  • [29] Chiral solitons of (2+1)-dimensional stochastic chiral nonlinear Schrodinger equation
    Arshed, Saima
    Raza, Nauman
    Javid, Ahmad
    Baskonus, Haci Mehmet
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (10)
  • [30] Optical solitons of (2+1)-dimensional nonlinear Schrodinger equation involving linear and nonlinear effects
    Matinfar, M.
    Hosseini, K.
    OPTIK, 2021, 228