On the dynamics of charged particles in an incompressible flow: From kinetic-fluid to fluid-fluid models

被引:5
作者
Choi, Young-Pil [1 ]
Jung, Jinwook [2 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 03722, South Korea
[2] Seoul Natl Univ, Res Inst Basic Sci, Seoul 08826, South Korea
关键词
Hydrodynamic limit; Euler-Poisson system; kinetic-fluid models; incompressible Navier-Stokes system; global existence of solutions; GLOBAL WEAK SOLUTIONS; NAVIER-STOKES EQUATIONS; LARGE FRICTION LIMIT; HYDRODYNAMIC LIMIT; CRITICAL THRESHOLDS; EULER EQUATIONS; VLASOV; EXISTENCE; SYSTEM; ALIGNMENT;
D O I
10.1142/S0219199722500122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the dynamics of charged particles interacting with the incompressible viscous flow. More precisely, we consider the Vlasov-Poisson or Vlasov-Poisson-Fokker-Planck equation coupled with the incompressible Navier-Stokes system through the drag force. For the proposed kinetic-fluid model, we study the asymptotic regime corresponding to strong local alignment and diffusion forces. Under suitable assumptions on well-prepared initial data, we rigorously derive a coupled isothermal/pressureless Euler-Poisson system and incompressible Navier-Stokes system (EPNS system). For this hydrodynamic limit, we employ the modulated kinetic, internal, interaction energy estimates. We also construct a global-in-time strong solvability for the isothermal/pressureless EPNS system. In particular, this global-in-time solvability gives the estimates of hydrodynamic limit hold for all times.
引用
收藏
页数:78
相关论文
共 54 条
  • [1] Anoshchenko O, 2014, J MATH PHYS ANAL GEO, V10, P267
  • [2] Anoshchenko O, 2010, J MATH PHYS ANAL GEO, V6, P143
  • [3] Baranger C., 2005, ESAIM P, V14, P41, DOI DOI 10.1051/PROC:2005004
  • [4] A RIGOROUS STABILITY RESULT FOR THE VLASOV-POISSON SYSTEM IN 3 DIMENSIONS
    BATT, J
    REIN, G
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 164 : 133 - 154
  • [5] Motion of a charged particle in ionized fluids
    Bedin, Luciano
    Thompson, Mark
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (08) : 1271 - 1318
  • [6] EXISTENCE THEORY FOR A POISSON-NERNST-PLANCK MODEL OF ELECTROPHORESIS
    Bedin, Luciano
    Thompson, Mark
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 157 - 206
  • [7] Modelling and Numerics for Respiratory Aerosols
    Boudin, Laurent
    Grandmont, Celine
    Lorz, Alexander
    Moussa, Ayman
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (03) : 723 - 756
  • [8] Boudin L, 2009, DIFFER INTEGRAL EQU, V22, P1247
  • [9] BRINKMAN HC, 1947, APPL SCI RES, V1, P27
  • [10] Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
    Carrillo, Jose A.
    Choi, Young-Pil
    Jung, Jinwook
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (02) : 327 - 408