Eringen's model via linearization of nonlocal hyperelasticity

被引:2
作者
Bellido, Jose C. [1 ,2 ,6 ,7 ]
Cueto, Javier [3 ]
Mora-Corral, Carlos [4 ,5 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, Ciudad Real, Spain
[2] Univ Castilla La Mancha, Dept Math, Ciudad Real, Spain
[3] Univ Nebraska Lincoln, Dept Math, Lincoln, NE USA
[4] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[5] UAM, Inst Ciencias Matemat, CSIC, UC3M & UCM, Madrid, Spain
[6] Univ Castilla La Mancha, ETSI Ind, Ciudad Real 13071, Spain
[7] Univ Castilla La Mancha, Dept Math, Ciudad Real 13071, Spain
关键词
Nonlocal elasticity; Riesz fractional and nonlocal gradients; linearization of nonlocal equations; Eringen model of elasticity; nonlocal Korn's inequality; ELASTICITY; EXISTENCE;
D O I
10.1177/10812865231208437
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider Riesz' fractional gradient and a truncated version of it. The equations of nonlocal nonlinear elasticity based on those gradients are known. We perform a formal linearization and arrive at the equations of linear elasticity based on those nonlocal operators. We prove the existence of solutions of the linear equations, notably, by a nonlocal version of Korn's inequality. Finally, we show that the linearizations obtained are particular cases of Eringen's model with singular kernels.
引用
收藏
页码:686 / 703
页数:18
相关论文
共 31 条
[1]  
ACOSTA G., 2017, Divergence Operator and Related Inequalities
[2]  
Adams R.A., 1975, Pure Appl. Math
[3]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[4]   Minimizers of nonlocal polyconvex energies in nonlocal hyperelasticity [J].
Bellido, Jose C. ;
Cueto, Javier ;
Mora-Corral, Carlos .
ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (03) :1039-1055
[5]   Fractional Piola identity and polyconvexity in fractional spaces [J].
Bellido, Jose C. ;
Cueto, Javier ;
Mora-Corral, Carlos .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (04) :955-981
[6]   Non-local gradients in bounded domains motivated by continuum mechanics: Fundamental theorem of calculus and embeddings [J].
Bellido, Jose Carlos ;
Cueto, Javier ;
Mora-Corral, Carlos .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
[7]  
Brezis H, 2011, UNIVERSITEXT, P349, DOI 10.1007/978-0-387-70914-7_11
[8]   A distributional approach to fractional Sobolev spaces and fractional variation: Existence of blow-up [J].
Comi, Giovanni E. ;
Stefani, Giorgio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (10) :3373-3435
[9]   A variational theory for integral functionals involving finite-horizon fractional gradients [J].
Cueto, Javier ;
Kreisbeck, Carolin ;
Schoenberger, Hidde .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (05) :2001-2056
[10]   Connections between nonlocal operators: from vector calculus identities to a fractional Helmholtz decomposition [J].
D'Elia, Marta ;
Gulian, Mamikon ;
Mengesha, Tadele ;
Scott, James M. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) :2488-2531