Process-property relationship in polylactic acid composites reinforced by iron microparticles and 3D printed by fused filament fabrication

被引:11
|
作者
Hasanzadeh, Rezgar [1 ]
Mihankhah, Peyman [1 ]
Azdast, Taher [1 ]
Bodaghi, Mahdi [2 ]
Moradi, Mahmoud [3 ]
机构
[1] Urmia Univ, Fac Engn, Dept Mech Engn, Orumiyeh, Iran
[2] Nottingham Trent Univ, Sch Sci & Technol, Dept Engn, Nottingham, England
[3] Univ Northampton, Fac Arts Sci & Technol, Northampton, England
来源
POLYMER ENGINEERING AND SCIENCE | 2024年 / 64卷 / 01期
关键词
3D printing; composites; impact resistance; mechanical properties; thermoplastics; POLYETHYLENE WASTE;
D O I
10.1002/pen.26556
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Polylactic acid (PLA) is the most widely used material in the fused filament fabrication (FFF) technique, which is a biocompatible thermoplastic. However, PLA's usefulness is limited by its narrow processing window and relatively low mechanical properties. Therefore, PLA composites have been developed to enhance its properties for FFF printing. A key challenge in producing composite parts via this method is to find the correlation between the mechanical properties of the parts and the process parameters. This knowledge is essential for optimizing the printing process to achieve the desired mechanical properties for composite parts industries such as aerospace, automotive, and medical, where high-performance composite materials are crucial. The ability to control and predict the mechanical properties of FFF-printed composite parts is critical for their successful integration into these industries. In this study, the effect of nozzle temperature (NT), printing speed (PS), and nominal porosity (POR) on the impact strength and specific impact strength of PLA/iron composites was examined using FFF. Response surface methodology (RSM) was used to optimize the experimental design. The results revealed that POR had the most significant effect on the impact resistance data, while NT had the least effect. Reducing the POR led to improved impact resistance in the samples. Multi-objective optimization results showed that the lowest NT (190degree celsius), the lowest POR (30%), and a PS of 50 mm/s were the optimal conditions for multiple objectives. RSM was also utilized to develop mathematical models of impact properties, focusing on varying NT, POR, and PS, which can be used to predict desired impact properties.
引用
收藏
页码:399 / 411
页数:13
相关论文
共 50 条
  • [21] Blending and functionalisation modification of 3D printed polylactic acid for fused deposition modeling
    Li, Yishan
    Huang, Lijie
    Wang, Xiyue
    Wang, Yanan
    Lu, Xuyang
    Wei, Zhehao
    Mo, Qi
    Sheng, Yao
    Zhang, Shuya
    Huang, Chongxing
    Duan, Qingshan
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2023, 62 (01)
  • [22] Modeling the Producibility of 3D Printing in Polylactic Acid Using Artificial Neural Networks and Fused Filament Fabrication
    Meiabadi, Mohammad Saleh
    Moradi, Mahmoud
    Karamimoghadam, Mojtaba
    Ardabili, Sina
    Bodaghi, Mahdi
    Shokri, Manouchehr
    Mosavi, Amir H.
    POLYMERS, 2021, 13 (19)
  • [23] The impact of defects on tensile properties of 3D printed parts manufactured by fused filament fabrication
    Fayazbakhsh, Kazem
    Movahedi, Mobina
    Kalman, Jordan
    MATERIALS TODAY COMMUNICATIONS, 2019, 18 : 140 - 148
  • [24] Fused filament fabrication and water contact angle anisotropy: The effect of layer height and raster width on the wettability of 3D printed polylactic acid parts
    Kingman, Jack
    Dymond, Marcus K.
    CHEMICAL DATA COLLECTIONS, 2022, 40
  • [25] Fused filament fabrication of biodegradable polylactic acid reinforced by nanoclay as a potential biomedical material
    Mihankhah, Peyman
    Azdast, Taher
    Mohammadzadeh, Hurieh
    Hasanzadeh, Rezgar
    Aghaiee, Soroush
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2023, 36 (03) : 961 - 983
  • [26] Study on 3D printing process of continuous polyglycolic acid fiber-reinforced polylactic acid degradable composites
    Aihemaiti, Patiguli
    Jia, Ru
    Aiyiti, Wurikaixi
    Jiang, Houfeng
    Kasimu, Ayiguli
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (04)
  • [27] Impregnation modeling and preparation optimization of continuous glass fiber reinforced polylactic acid filament for 3D printing
    Yu, Liguo
    Chen, Ke
    Xue, Ping
    Cui, Yonghui
    Jia, Mingyin
    POLYMER COMPOSITES, 2021, 42 (11) : 5731 - 5742
  • [28] 3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication-A Review
    Dickson, Andrew N.
    Abourayana, Hisham M.
    Dowling, Denis P.
    POLYMERS, 2020, 12 (10)
  • [29] Review on process model, structure-property relationship of composites and future needs in fused filament fabrication
    Papon, Easir Arafat
    Haque, Anwarul
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2020, 39 (19-20) : 758 - 789
  • [30] Properties of Heat-Treated Wood Fiber-Polylactic Acid Composite Filaments and 3D-Printed Parts Using Fused Filament Fabrication
    Chien, Yu-Chen
    Yang, Teng-Chun
    POLYMERS, 2024, 16 (02)